• Title/Summary/Keyword: Tire slip angle

Search Result 29, Processing Time 0.028 seconds

Autonomous Vehicle Driving Control Considering Tire Slip and Steering Actuator Performance (타이어 슬립과 조향작동장치의 성능을 고려한 무인자동차 자율주행 제어)

  • Park, C.H.;Gwak, G.S.;Jeong, H.U.;Hong, D.U.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.36-43
    • /
    • 2015
  • An autonomous vehicle control algorithm based on Ackerman Geometry is known to be reliable in low tire slip situation. However, vehicles at high speed make lateral errors due to high tire slip. In this paper, considering the tire slip of vehicles, the steering angle is determined based on the Ackerman Geometry and is supplemented tire slip angle by the Stanley steering algorithm. In addition, to prevent the tire slip, the algorithm, which restricts steering if a certain level of slip occurs, is used to reduce the lateral error. While many studies have been extended to include vehicle slip, studies also need to be carried out on the tire slip depending on hardware performance. The control algorithm of autonomous vehicles is compensated considering the sensor noise and the performance of steering actuator. Through the various simulations, it was found that the performance of steering actuator was the key factor affecting the performance of autonomous driving. Also, it was verified that the usefulness of steering algorithm considering the tire slip and performance of steering actuator.

TECHNIQUE OF SEPARATE MEASURING SIDE SLIP FOR TOE ANGLE AND CAMBER ANGLE

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.681-686
    • /
    • 2006
  • The current flat type side slip tester measures only the total side slip. Therefore, measurement techniques which can be used to determine the side slip for each alignment element were examined. Because the side slip related to the camber angle varies depending on the unit load per travel wheel while the side slip related to the toe angle does not on the unit per travel wheel, but depends only on the direction of the tire, the side slip for each alignment element can be determined separately.

Abrasion Behaviors of NR/BR Compounds Using Laboratory Abrasion Tester

  • Son, Chae Eun;Yang, Seong Ryong;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.12-19
    • /
    • 2021
  • The abrasion behaviors of NR/BR blend vulcanizates were investigated using NR/BR = 100/0, 80/20, and 60/40 compounds. The abrasion test was performed using a laboratory abrasion tester (LAT) at slip angles of 1° and 7°. The size distributions of the wear particles and the abrasion rates were examined according to the rubber compositions and slip angles. The most abundant wear particles at the slip angle of 1° were sizes above 1,000 ㎛, irrespective of the rubber composition. The most abundant wear particles at 7° slip angle had sizes in the range of 212-500 ㎛, except for the NR = 100 sample. The wear particle size distribution shifted to a smaller size as the slip angle and BR content increased. The abrasion rate at 7° was much larger than that at 1° slip angle. Furthermore, the abrasion rate was notably increased by adding BR to NR.

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

A Study on Characteristics of Stiffness and PRAT due to the Belt Angle of Tire using FEM (FEM을 이용한 타이어의 벨트각도에 따른 강성 및 PRAT 특성 연구)

  • Sung K.D.;Kim S.R.;Kim K.H.;Kim S.J.;Cho C.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1371-1375
    • /
    • 2005
  • The paper has analyzed the influence of tire design variable on the tire Force and Moment (F&M) characteristics, especially by the belt angle, the Plysteer Residual Aligning Torque (PRAT) which is considered as one of the causing factors for the vehicle pull. To validate the tire FE model, the tire stiffness and the PRAT which can be derived from the simulation data have been compared with the experimental data of test machine. In addition to PRAT characteristic, the tire stiffness and cornering characteristics due to the belt angle have been investigated. The effects of drum's curvature on the PRAT have been also investigated using the tire FE model and the usefulness of the current drum type F&M test machine can be confirmed.

  • PDF

The Study on PRAT Performance due to Tire Pattern Shapes using Steady State Rolling Analysis Method (정상 상태 롤링 해석 기법 적용을 통한 타이어 패턴 형상에 따른 PRAT 특성 연구)

  • Sung, Ki-Deug;Park, Hyun-Man;Koo, Byong-Kook;Cho, Choon-Tack
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • It is generally known that the PRAT(Plysteer Residual Aligning Torque) is one of indicating a performance factors of a tire for assessing the vehicle pull, also tire pattern shape, which means lateral groove angle, is very important tire design factor in relation to the PRAT. Lateral grooves of tire pattern are widely divided into center and shoulder parts. So, this paper has studied the correlation between the PRAT and their lateral groove angles using FEM. Especially, the steady state rolling analysis among tire rolling analysis methods has been used for the PRAT performance study. Firstly, analysis result data have been compared with the experimental data to validate FE analysis for PRAT. Next, the PRAT due to the lateral groove angle about PCR(Passenger Car Radial) tire and SUV tire has been analyzed. The tendency of the PRAT due to the lateral groove angles can be used as a guide line for the tire design in relation to vehicle pull.

A Study on Characteristics of PRAT and Cornering due to the Belt Angle of Tire by the FEM (FEM을 이용한 타이어의 벨트각도에 따른 PRAT 및 코너링 특성 연구)

  • Sung, Ki-Deug;Kim, Seong-Rae;Kim, Ki-Hyun;Kim, Sun-Joo;Cho, Choon-Tack
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.104-112
    • /
    • 2006
  • The influence of tire belt angle on the Plysteer Residual Aligning Torque(PRAT) and the cornering stiffness by the FEM has been studied. The PRAT is a performance factor of the tire about vehicle pull, and the cornering stiffness has relation to vehicle steering response of outdoor test. To validate FE model for analysis, simulation data for both the static stiffness(vertical, lateral) and the PRAT have been compared with the experimental data. In addition to the characteristics of the PRAT and the cornering stiffness due to the tire belt angle, rolling and cornering contact characteristics have been studied. The tendency of the PRAT and the cornering stiffness due to the belt angle can be used as a guide line for the tire design in relation to vehicle pull and vehicle steering response.

A Study on Lateral Tire-road Friction Coefficient Estimation Using Tire Pneumatic Trail Information (타이어 뉴메틱 트레일 정보를 활용한 횡방향 타이어 노면 마찰 계수에 관한 연구)

  • Han, Kyoungseok;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.310-318
    • /
    • 2016
  • The demands for vehicle safety systems such as ABS and ESC have been increased. Accurate vehicle state estimation is required to realized the abovementioned systems and tire-friction coefficient is crucial information. Estimation of lateral tire-road friction coefficient using pneumatic trail information is mainly dealt in this paper. Pneumatic trail shows unique characteristics according to the wheel side slip angle and these property is highly sensitive to vehicle lateral motion. The proposed algorithm minimizes the use of conventional tire models such as magic formula, brushed tire model and Dugoff tire model. The pure side slip maneuver, which means no longitudinal dynamics, is assumed to achieve the ultimate goal of this paper. A simulation verification using Carsim and Simulink is performed and the results show the feasibility of the proposed algorithms.

Effect of tractor travelling speed on a tire slip

  • Kim, Yeon Soo;Lee, Sang Dae;Kim, Young Joo;Kim, Yong Joo;Choi, Chang Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.120-127
    • /
    • 2018
  • The rural labor force has gradually been decreasing due to the decrement of the farm population and the increment of the aging population. To solve these problems, it is necessary to develop and study autonomous agricultural machinery. Therefore, analyzing the dynamic behavior of vehicles in an autonomous agricultural environment is important. Until now, most studies on agricultural machinery, especially on ground vehicle dynamics, have been done by field tests. However, these field test methods are time consuming and costly with seasonal restrictions. A research method that can replace existing field test methods by using simulations is needed. In this study, we did basic research analyzing the effect of the travelling speed of a tractor on tire slip using simulation software. A tractor simulation model was developed based on field conditions following a straight path. The simulation was done for three ranges of speed: 20 - 30 km/h (considered the normal travelling speed range), 6 - 8 km/h (considered the plow tillage speed range) and 2 - 4 km/h (considered the rotary tillage speed range). The results of the simulation show that the slip ratio and slip angle values tended to increase as the traveling speed range of the tractor decreased. From the simulation results, it can be concluded that at low tractor speeds, it becomes more difficult to control the vehicle path. In future research, simulations will be done with various work environments such as a curved path as well as with various friction coefficient conditions, and the simulation results will be experimentally verified by applying them to an agricultural tractor.

Detection method for a tire wear using a motor rotation angle (모터 회전 각도를 활용한 타이어 마모도 확인 기법)

  • Seo, Eui-soeng;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.252-254
    • /
    • 2017
  • Tire is one of the most important to drive cars. There is high possibility to occur slip phenomenon and to increase braking distance depending on tire wear. Therefore, you should be check tire wear and replace tires periodically. In the past, most people manually check the wear level and judged whether or not to replace the tire. But, since the standard is different for each person, the replacement cycle becomes unclear. Since a clear replacement cycle is established, it is expected that the accident rate of a vehicle caused by a tire will be reduced. Therefore, i propose detection method for a tire wear using a motor rotation angle.

  • PDF