• Title/Summary/Keyword: Tire Slip Angle

Search Result 29, Processing Time 0.025 seconds

A Study on the Full Active 4WS Control Method Using Nonlinear Tire Model (비선형 타이어모델을 이용한 완전능동형 4WS 제어방법에 관한 연구)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.76-85
    • /
    • 1997
  • The understeer characteristics of four wheel steering system(4WS system) in a high speed region have a negative effect upon the yaw velocity, leading to a decrease in the handling ability of vehicle. As a result, even if the side slip angle of vehicle can be kept up a minimum, a driver must compensate a decrease in yaw velocity by increasing the steering wheel angle in order to track the desired vehicle path. In this study, to keep the side slip angle of vehicle at zero and achieve a suitable yaw velocity in vehicle motion, a full active 4WS system(FA 4WS system) with actively steerable front and rear wheels is presented based on a nonlinear vehicle model and a model following control of yaw velocity. And the analysis results show the fat that, besides the excellent stability of vehicle, the FA 4WS system is able to realize better handling performance of vehicle than the previous 4WS systems in the high speed region.

  • PDF

Estimation of vehicle parameters using GPS/INS (GPS/INS 를 이용한 차량의 파라미터 추정)

  • Park, Gun-Hong;Chang, Yu-Shin;Ryu, Jae-Heon;Park, Seok-Hyun;Lee, Chun-Han;Hong, Sin-Pyo;Lee, Man-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1524-1529
    • /
    • 2003
  • In this paper deals with a unique method for measuring vehicle states such as body sideslip angle and tire sideslip angle using GPS velocity information in conjunction with other sensors. A method for integrating Inertial Navigation System (INS) sensors with GPS measurements to provide higher update rate estimates of the vehicle states is presented, and the method can be used to estimate the tire cornering stiffness. The experimental results for the GPS velocity-based sideslip angle measurement and cornering stiffness estimates are compared with the theoretical predictions. From the experimental results, it can be concluded that the proposed method has an advantage for future implementation in a vehicle safety system.

  • PDF

Development of the Active Steering Tilt Controller for Stability of the Narrow Commuter Vehicles (폭이 좁은 차량의 안정성 향상을 위한 능동형 스티어링 기울임 제어기의 개발)

  • 소상균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • As the traffic congestion and parking problems in urban areas are increased the tall and narrow commuter vehicles have interested as a means to increase the utilization of existing freewa- ys and parking facilities. However, in hard cornering those vehicles could reduce stability against overturning compared to conventional vehicles. This tendency can be mitigated by tilting the body toward the inside of the turn. In this paper those tilting vehicles are considered in which at speed at least, the tilt angle is controlled by steering the front wheels. In other word, if the driver turns the steering wheel the tilt controller automatically steers the road wheel to tilt the body inside of the turn. Also, the dynamic tilting vehicle model with tire slip angles is constructed by adding the roll degree of freedom. Finally, through computer simulation the behaviors of the tilting vehicles are investigated.

  • PDF

Three-Dimensional Modeling for Impact Behavior Analysis (충돌시 3차원 거동특성 해석을 위한 모델링)

  • 하정섭;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.353-356
    • /
    • 2002
  • In vehicle accidents, the rolling, pitching, and yawing which are produced by collisions affect the motions of vehicle. Therefore, vehicle behavior under impact situation should be analyzed in three-dimension. In this study, three-dimensional vehicle dynamic equations based on impulse-momentum conservation principles under vehicle impact are introduced for simulation. This analysis has been performed by the real vehicle impact data from JARI and RICSAC. This study suggested each system modeling such as suspension, steering, brake and tire as well as the appropriate vehicle behavior simulation model with respect to pre and post impact.

  • PDF

Dynamic Characteristics Analysis of Four Wheel Steering Vehicles Using Nonlinear Tire Model (비선형 타이어모델을 이용한 4WS 자동차의 주행특성 해석)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.110-119
    • /
    • 1997
  • Four wheel steering(4WS) systems which can control the lateral and yaw motions of vehicles by steering front and rear wheels simultaneously, have been regarded as effective for improving the stability and handing performance of vehicles. However, since the 4WS systems depend only on the lateral force of tire, they have some limitation due to the nonlinear characteristics of tire related with the saturation phenomenon of lateral force to the slip angle of tire in a near-limit-performance maneuvering range. In this study, in other to evaluate the effect of nonlinear characteristics of tire on the dynamic performance of vehicles, a new concept for driving the cornering stiffness of nonlinear tire by using the "Magic Formula" tire model is proposed. In addition, the nonlinear 4WS vehicle model is constructed based on the proposed cornering stiffness of nonlinear tire. It is noted from simulation that the nonlinear characteristics of tire affect greatly on the 4WS vehicle performance.rformance.

  • PDF

A Study on Slow Rolling tire for Prediction of the Tire Forces and Moments (회전하는 타이어의 접지면 동특성 예측에 관한 연구)

  • 김항우;황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1997
  • It is known that tire plays an important role to the dynamic performances of a vehicle such as noise, vibration, ride and handling. Therefore, force and moment measurements have been a part of the traditional tire engineering process. In this paper, a computational analysis technique has been explored. A FE model is made to simulate inflation, vertical load due to the vehicle weight, and the slow rolling of a radial tire. A rigid surface with Coulomb friction is included in the model to simulate the slow rolling contact. The tire slip during the in-plane motion of the rigid surface is calculated. Results are presented for both lateral and vertical loads, as well as straight ahead free rolling. The calculated and measured tire slips are in good correlation. A Study on slow Rolling Tire for perdiction of tire Forces and Moments.

  • PDF

DEVELOPMENT OF AN ACTIVE FRONT STEERING SYSTEM

  • Kim, S.J.;Kwak, B.H.;Chung, S.J.;Kim, J.G.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 2006
  • We have developed an active front steering system(AFS) with a planetary gear train, which can vary the steering gear ratio according to the vehicle speed and improve vehicle stability by superimposing steering angle. We conducted vehicle tests showing that co-operated control of AFS with ESP can improve vehicle stability by direct control of tire slip angle and that steering reaction torque during AFS intervention can be compensated by torque compensation using electric power steering.

Vehicle Stabilization Using MPC Based on Nonlinear Tire Model (비선형 타이어모델 기반 MPC를 이용한 차량 안정화)

  • Song, Yuho;Kim, Hansu;Kim, Seungki;Kim, Youngwoo;Lee, Tae Hee;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.730-736
    • /
    • 2016
  • Recent research suggests the various applications of Model Predictive Control on vehicle systems. In numerous cases, nonlinear tire models such as the Magic Formula, which are highly complex and are more detailed than necessary, are used. This paper presents a nonlinear tire model that excludes the region of negative slope but expresses the nonlinear properties of tire well enough for tracking the lane of a racing course. The proposed inverse tire model can also be used to calculate the slip angle from the tire force. Thus, the model can be utilized to design the Model Predictive Controller.

A Roll-behavior Analysis of SUV in Turning Motion on a Slope (경사면에서 선회운동하는 SUV차량의 롤거동 해석)

  • Bang, Jeonghoon;Lee, Byunghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.131-137
    • /
    • 2014
  • The SUV has a risk of rollover because of the highness of center of mass. In this paper the roll-behavior of a SUV in turning motion is analyzed. Dynamic model of the vehicle on the slope is developed and simulation is carried out using the software ADAMS/Car. The results show that the relational expression between the ground force acting on the tire and the roll motion is well established. It is also identified that the driving state of the vehicle becomes unstable at the lower or upper position of the slope.

Estimation of vehicle cornering stiffness via GPS/INS

  • Park, Gun-Hong;Chang, Yu-Shin;Ryu, Jae-Heon;Jeong, Seung-Gweon;Song, Hyo-Shin;Park, Seok-Hyun;Lee, Chun-Han;Hong, Sin-Pyo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1706-1709
    • /
    • 2003
  • This paper demonstrates a unique method for measuring vehicle states such as body sideslip angle and tire sideslip angle using Global Positioning System(GPS) velocity information in conjunction with other sensors. A method for integrating Inertial Navigation System (INS) sensors with GPS measurements to provide higher update rate estimates of the vehicle states is presented, and the method can be used to estimate the tire cornering stiffness. The experimental results for the GPS velocity-based sideslip angle measurement. From the experimental results, it can be concluded that the proposed method has an advantage for future implementation in a vehicle safety system.

  • PDF