• Title/Summary/Keyword: Tipping moment

Search Result 15, Processing Time 0.02 seconds

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION IN THE ALVEOLAR BONE BY VARIOUS MOLAR UPRIGHTING SPRINGS (Molar Uprighting Spring에 의해 발생되는 치조골내의 응력분포에 관한 광탄성학적 연구)

  • Choi, Jin-Hugh;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.21 no.2 s.34
    • /
    • pp.353-366
    • /
    • 1991
  • This study was performed to analyze the effects of forces to the alveolar bone by various molar uprighting spring such as helical uprighting spring. T-loop spring, Modified T-loop spring and open coil spring. The simplified two-dimensional photoelastic model was constructed with a lower left posterior quadrant containing the second molar, the first and second premolars and the canine, with the first molar missing. Several molar uprighting springs were fabricated from 0.017 by 0.022 inch blue Elgiloy and applied to the photoelastic model. Two-dimensional photoelastic stress analysis was performed, and the stress distribution was recorded by photography The results obtained were as follows; 1. In all the kinds of the springs, the center of rotation of the mandibular second molar was oserved at the apical 1/5-1/6 between the alveolar crest and the root apex. 2. In all the kinds of the spring, the stress induced in the mesial root surface of the mandibular second molar was relatively homogeneous but there was some difference in the magnitude of the stress. 3. In the kinds of the springs, the distal crown tipping moment of the second molar was increased in turn as open coil spring, helical uprighting spring, T-loop spring, and modified T-loop spring. 4. The largest extrusive force was occured in the T-loop spring, intrusive force was occured in Modified T-loop spring only, and the largest distal tipping force was occured in open coil spring. 5. In the T-loop spring with activation, the stress induced in the mesial root surface of the second molar was increased gradually from the root apex to the alveolar crest and highly concentrated in the alveolar crest.

  • PDF

A Study on the Determination of the Tip-Over Stability of High Place Operation Car Using Multibody Dynamics Program and ZMP (다물체 동역학 프로그램과 ZMP 이론을 이용한 고소작업차량의 전도 안정성 판별에 관한 연구)

  • Kim, Sang Won;Jung, Chang Jo;Lee, Jung-Hwan;Kang, Dong-Myeng;Park, Moon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.145-152
    • /
    • 2018
  • This study deals with the method of determining the tip-over stability of a truck mounted on a high place operation car that is frequently used to carry out high-altitude work. Multibody Dynamics Program and Zero Moment Point (ZMP) theory are used to include dynamic effects during the car's high place operation. Through a combination of the Multibody Dynamics Program and ZMP, understanding the dynamic effects of the car's operating parts and building a detailed tip-over model of the car permitted a more precise prediction of the car's tipping-over behavior. It is also expected to help reduce the car's development time due to the time-effective simulation and provide safer work levels for the operating guide (in terms of working radius and lifting capability) with the dynamics effects.

Three-dimensional finite element analysis on the effect of maxillary incisor torque (상악 절치부-토크에 의한 치아 이동과 응력 분포에 관한 유한요소법적 연구)

  • Yoon, Hyun-Joo;Lim, Yong-Kyu;Lee, Dong-Yul;Jo, Yung-Soo
    • The korean journal of orthodontics
    • /
    • v.35 no.2 s.109
    • /
    • pp.137-147
    • /
    • 2005
  • The purpose of this study was to investigate the stress distribution in the periodontal tissue and the displacement of teeth when active torque was applied to the maxillary incisors by three-dimensional finite element analysis A three-dimensional finite element model consisted of the maxillary teeth and surrounding periodontal membrane, $.022{\times}.028$ Roth prescription bracket and stainless steel, NiTi and TMA rectangular ideal arch wires which were modeled by hexahedron elements. Applied active torques were 2, 5 and 10 degrees ThHe findings of this study showed that the reaction force acting or the bracket was the extrusion force on the mesial side of the incisors and canine and the intrusion force on the distal side of the incisors and canine. The amount of force and moment was greatest at the lateral incisor. When active anterior labial crown torque was applied. labial crown and distal tipping and Intrusion of the incisors took place. and lingual crown distal tipping and extrusion of the canine occured. An excessive force was concentrated on the lateral incisor, when the stainless steel wire was used NiTi or TMA wire is desirable for torque control.

An Analytical Study on Strain Distribution Using Strain Gauge Attached On Root Surface (치근 부착 스트레인 게이지를 이용한 응력 분포 분석)

  • Kim, Sang-Cheol;Park, Kyu-Chan
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.325-333
    • /
    • 2001
  • Optimal orthodontic treatment could be possible when a orthodontist can predict and control tooth movement by applying a planned force system to the dentition. The moment to force(M/F) ratio at the bracket, has been shown to be a primary determinate of the pattern of tooth movement. As various n/F ratios are applied to the bracket on the tooth crown, strain distribution in periodontium can be changed, and the center of rotation in tooth movement can be determined. It is, therefore, so important in clinicalorthodontics to know the strain distribution in a force system of a M/F ratio. The purpose of this study was to analyze the strain distribution in orthodontic force system by strain gauge attached to tooth root, and to evaluate the usage of the method. For this study, an experimental upper anterior arch model was constructed, where upper central incisors, on the root surface of which, 8 strain gauges were attached, were implanted In the photoelastic resin, as in the case of 4mm midline diastema. Three types of closing of upper midline diastema closure were compared : 1. with elastomeric chain(100g force) in no arch wire, 2. elastomeric chain in .016“ round steel wire, 3. elastomeric chain in .016”x.022“ rectangular steel wire. The results were as follows. 1. Strain distributions on labial, lingual, mesial and distal root surface of tooth were able to be evaluated with the strain gauge method, and the patterns of tooth rotation were understood by presuming the location of moment arm. 2. Extrusion and tipping movement of tooth was seen in closing in no arch wire, and intrusion and bodily movement was seen with steel arch wire inserted.

  • PDF

A Study on the Implementation of USN Technologies for Safety Management Monitoring of Architectural Construction Sites (건축공사현장의 안전관리 모니터링을 위한 USN 기술 적용에 관한 연구)

  • Kim, Kyoon-Tai
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.103-109
    • /
    • 2009
  • The construction industry has the highest death rate related to safety accidents of any industry. Furthermore, in contrast to other industries, where the death rate related to safety accidents has been steadily declining, both the death toll and the number of accidents in the construction industry have been on the rise. Construction accidents occur when various risks increase in an intertwined way to reach a tipping point; a moment when such factors cannot be tolerated any longer Conventional safety management methods have restrictions in terms of their ability to fully prevent all types of safety accidents. This research considers ways in which USN technology can be applied to safety management on a construction site, and derives a method of applying USN technology for safety management monitoring. The tasks related to safety management on construction sites, as well as the occurrence of accidents, are first analyzed. By analyzing the characteristics of construction accidents, the factors that must be a priority and the factors that can be a lower priority are derived. Finally, the configuration of a monitoring system for safety management on a construction site to which USN technology is applied is presented. It is expected that safety accidents can be prevented from occurring on construction sites by applying this cutting-edge USN technology.