• Title/Summary/Keyword: Tip-out

Search Result 709, Processing Time 0.024 seconds

Three Component Velocity Field Measurements of Turbulent Wake behind a Marine Propeller Using a Stereoscopic PIV Technique (Stereoscopic PIV 기법을 이용한 선박용 프로펠러 후류의 3차원 속도장 측정)

  • Lee, Sang-Joon;Paik, Nu-Geun;Yoon, Jong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1716-1723
    • /
    • 2003
  • A stereoscopic PIV(Particle Image Velocimetry) technique was employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was determined using two CCD cameras with the angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases and ensemble averaged to investigate the spatial evolution of the propeller wake in the near-wake region from the trailing edge to one propeller diameter(D) downstream. The phase-averaged velocity fields show the potential wake and the viscous wake developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component and strain rate have large values at the locations of tip and trailing vortices. As the flow goes downstream, the turbulence intensity, the strength of tip vortices and the magnitude of out-of-plane velocity component at trailing vortices are decreased due to viscous dissipation, turbulence diffusion and blade-to-blade interaction.

Propeller Tip Vortex Cavitation Control Using Water Injection (물 분사를 이용한 프로펠러 날개 끝 보오텍스 캐비테이션 제어)

  • Lee, Chang-Sup;Han, Jae-Moon;Kim, Jin-Hak;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.770-775
    • /
    • 2010
  • As considerable interests in noise emission from the ships have been increased, control of the propeller cavitation generating vibration and radiating noise is looming large. In general, the tip vortex cavitation is first produced in case of full scale propellers, and noise levels rise dramatically from that moment. In order to reduce induced noise from the tip vortex cavitation and hence increase the cavity inception speed, we propose the mass injection method. Water injected from the propeller tip decreases rotating speed of the tip flow, and it restrains growing the tip vortex cavity. Experimental investigations of the model tests carried out in a large cavitation tunnel show that the tip vortex cavitation is effectively controled by water injection from the propeller tip.

Tip-Enhanced Raman Scattering with a Nanoparticle-Functionalized Probe

  • Park, Chan-Gyu;Kim, Ju-Young;Lee, Eun-Byoul;Choi, Han-Kyu;Park, Won-Hwa;Kim, Jin-Wook;Kim, Zee-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1748-1752
    • /
    • 2012
  • We carried out the tip-enhanced Raman scattering (TERS) with a tip that is functionalized with a Aunanoparticle (AuNP, with a diameter of 250 nm). The AuNP tip is fabricated by a direct mechanical pickup of a AuNP from a flat substrate, and the TERS signal from the AuNP tip - organic monolayer - Au thin film (thickness of 10 nm) is recorded. We find that such a AuNP-tip interacting with a thin film routinely yields signal enhancement larger than ${\sim}10^4$, which is sufficient not only for local (with detection area of ~200 $nm^2$) Raman spectroscopy, but also the nanometric imaging of organic monolayers within a reasonable acquisition time (~20 minutes/image).

On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass

  • Zeren, Serkan;Gurgoze, Metin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.69-93
    • /
    • 2013
  • The present study deals with the dynamics of the flapwise (out-of-plane) vibrations of a rotating, internally damped (Kelvin-Voigt model) tapered Bernoulli-Euler beam carrying a heavy tip mass. The centroid of the tip mass is offset from the free end of the beam and is located along its extended axis. The equation of motion and the corresponding boundary conditions are derived via the Hamilton's Principle, leading to a differential eigenvalue problem. Afterwards, this eigenvalue problem is solved by using Frobenius Method of solution in power series. The resulting characteristic equation is then solved numerically. The numerical results are tabulated for a variety of nondimensional rotational speed, tip mass, tip mass offset, mass moment of inertia, internal damping parameter, hub radius and taper ratio. These are compared with the results of a conventional finite element modeling as well, and excellent agreement is obtained.

Tip Clearance Effect of Low Mass Flow Rate High Specific Speed Centrifugal Impeller (저유량 고비속도 원심압축기 임펠러에서의 팁간극에 따른 효과)

  • Im, Kang-Soo;Kim, Yang-Gu;Kim, Kyi-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.240-243
    • /
    • 2008
  • In this paper, the design of Centrifugal Compressor which is used in sizes 50 horse power has 8 pressure ratio and numerical analysis of the flow within compressor varying tip clearance length are performed. To get high pressure ratio with low power the exit height of impellers is low but compressor has very high speed of revolution. So compressor has high specific speed although mass flow rate is very small. The shape of impellers at the first stage is carried out. Flow and performance characteristics of impellers has been analyzed by using a commercial CFD program, $Fine^{TM}$/turbo. The result shows that loss coefficient is affected by tip clearance length and compressor has proper tip clearance length. It is possible to decrease loss by selecting apt tip clearance length.

  • PDF

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • Park, Cheol-U;Ju, Hyeon-Sik
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF

A Numerical Study on the Effect of Tip Clearance on the Performance of Turbine Rotor (터빈 로터의 익단 간극이 성능에 미치는 영향에 대한 수치해석적 연구)

  • Kang, Young-Seok;Kang, Shin-Hyoung;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.7-14
    • /
    • 2002
  • The effect of tip clearance is important part for turbomachinery performance. Tip leakage flow due to tip clearance is mixed with passage vortex. Large amount of loss is generated at the mixing region and overall performance of turbomachinery is reduced. Numerical calculation of the 1st stage rotor of GE7FA gas turbine is carried out to investigate tip clearance effect on performance, pitchwise variations of velocity profiles, pressure distributions and loss coefficients. A commercial code, CFX-TascFlow is validated in this study.

Tip Clearance Losses - A Physical Based Scaling Method

  • Pelz, Peter F.;Karstadt, Sascha
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Tip clearance losses occur in every turbomachine. To estimate the losses in efficiency it is important to understand the mechanism of this secondary flow. Tip clearance losses are mainly caused by a spiral vortex formed on the suction side of the blade of a turbomachine, which induces a drag and also has an influence on the incident flow of the blades. In this paper a physical based scaling method is developed out of an analytical ansatz for the tip clearance losses. This scaling method is validated by measurements on an axial fan with five different tip clearances.

Specimen Thickness and Crack Depth Effects on J Testing and Crack Tip Constraint for Non-standard Specimen (시편두께 및 균열깊이 영향을 고려한 비표준시편의 J 시험법 및 구속효과의 정량화)

  • Kim, Jin-Su;Cho, Soo-Man;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1531-1538
    • /
    • 2003
  • This paper compiles solutions of plastic $\eta$ factors and crack tip stress triaxialites for standard and nonstandard fracture toughness testing specimens, via detailed three-dimensional (3-D) finite element (FE) analyses. Fracture toughness testing specimens include a middle cracked tension (M(T)) specimen, SE(B), single-edge cracked bar in tension (SE(T)) and C(T) specimen. The ligament-to-thickness ratio of the specimen is systematically varied. It is found that the use of the CMOD overall provides more robust experimental J estimation than that of the LLD, for all cases considered in the present work. Moreover, the J estimation based on the load-CMOD record is shown to be insensitive to the specimen thickness, and thus can be used for testing specimen with any thickness. The effects of in-plane and out-of-plane constraint on the crack tip stress triaxiality are also quantified, so that when experimental J value is estimated according to the procedure recommended in this paper, the corresponding crack tip stress triaxiality can be estimated. Moreover, it is found that the out-of-plane constraint effect is related to the in-plane constraint effect.

The Effect of Test Variables on the Accuracy of Equo-Tip Hardness (Equo-Tip 경도값에 미치는 실험변수의 영향)

  • Nahm, S.H.;Jeon, S.B.;Kim, J.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.32-36
    • /
    • 1990
  • For the accurate measurements of hardness in a material, it is necessary to have a thorough understanding of the effects of test variables on the accuracy of hardness value. For the rebound hardness test, major test variables are the radius of hammer ball tip, type of backing materials, size and roughness of the specimen. In this study, effects of these variables on Equo-Tip hardness value were investigated. Hardness measurements were carried out using WC balls with various sizes of worn-ot zone. The sample materials chosen for the experiments were commercial standard hardness blocks and SM45C steel bars subjected to either normalization or quench and temper treatments. As backing materials, aluminum, steel and rubber plates were used in all the experiments. Experimental results show that for the accurate measurements of Equo-tip hardness, it is necessary to use the hammer ball with a worn-out zone parameter of less than 0.23, and the recommended minimum thickness and width of the specimen are 25mm and 70mm, respectively. Further for the surface preparation, the specimens need to be polished with an emery paper of No. 400 or finer, and for the backing matrials, it is recommended to use steels or rubbers.

  • PDF