• 제목/요약/키워드: Tip-Leakage Flow

검색결과 129건 처리시간 0.02초

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (I) - 블레이드 끝단면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (I) - Blade Tip -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.349-356
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the tip of the rotating turbine blade with various incoming flow incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with a mean tip clearance of 2.5% of the blade chord. The incoming flow Reynolds number is $1.5{\times}10^5$ at design condition. To examine the effect of off-design condition, the experiments with various incidence angles ranging between $-15^{\circ}$ and $+7{\circ}$ were conducted. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. The results indicated that the incidence angle strongly affects the behavior of tip leakage flow around the blade tip and consequently plays an important role in determining heat transfer characteristics on the tip. For negative incidence angles, the heat/mass transfer in the upstream region on the tip decreases by up to 20%. On the contrary, for positive incidence angles, much higher heat transfer coefficients are observed even with small increase of incidence angle.

터빈 로터의 익단 간극이 성능에 미치는 영향에 대한 수치해석적 연구 (A Numerical Study on the Effect of Tip Clearance on the Performance of Turbine Rotor)

  • 강영석;강신형;조형희
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.7-14
    • /
    • 2002
  • The effect of tip clearance is important part for turbomachinery performance. Tip leakage flow due to tip clearance is mixed with passage vortex. Large amount of loss is generated at the mixing region and overall performance of turbomachinery is reduced. Numerical calculation of the 1st stage rotor of GE7FA gas turbine is carried out to investigate tip clearance effect on performance, pitchwise variations of velocity profiles, pressure distributions and loss coefficients. A commercial code, CFX-TascFlow is validated in this study.

Tip Clearance Effects on Inlet Hot Streaks Migration Characteristics in Low Pressure Stage of a Vaneless Counter-Rotating Turbine

  • Zhao, Qingjun;Wang, Huishe;Zhao, Xiaolu;Xu, Jianzhong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.25-34
    • /
    • 2008
  • In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in low pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm(2.59% high pressure turbine rotor height, and 2.09% low pressure turbine rotor height). The numerical results show that the hot streak is not mixed out by the time it reaches the exit of high pressure turbine rotor. The separation of colder and hotter fluid is observed at the inlet of low pressure turbine rotor. Most of hotter fluid migrates towards the rotor pressure surface, and only little hotter fluid migrates to the rotor suction surface when it convects into the low pressure turbine rotor. And the hotter fluid migrated to the tip region of the high pressure turbine rotor impinges on the leading edge of the low pressure turbine rotor after it goes through the high pressure turbine rotor. The migration of the hotter fluid directly results in very high heat load at the leading edge of the low pressure turbine rotor. The migration characteristics of the hot streak in the low pressure turbine rotor are dominated by the combined effects of secondary flow and leakage flow at the tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the low pressure turbine rotor is intensified due to the effects of the leakage flow. And the numerical results also indicate that the leakage flow effect trends to increase the low pressure turbine rotor outlet temperature at the tip region.

  • PDF

고정된 터빈 블레이드의 베인에 대한 상대위치 변화가 끝단면 및 슈라우드의 열/물질전달 특성에 미치는 영향 (Effect of Vane/Blade Relative Position on Heat/Mass Transfer Characteristics on the Tip and Shroud for Stationary Turbine Blade)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.446-456
    • /
    • 2006
  • The effect of relative position of the stationary turbine blade for the fixed vane has been investigated on blade tip and shroud heat transfer. The local mass transfer coefficients were measured on the tip and shroud fur the blade fixed at six different positions within a pitch. A low speed stationary annular cascade with a single turbine stage was used. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is 2.5% of the blade chord. A naphthalene sublimation technique was used for the detailed mass transfer measurements on the tip and the shroud. The inlet flow Reynolds number based on chord length and incoming flow velocity is fixed to $1.5{\times}10^5$. The results show that the incoming flow condition and heat transfer characteristics significantly change when the relative position of the blade changes. On the tip, the size of high heat/mass transfer region along the pressure side varies in the axial direction and the difference of heat transfer coefficient is up to 40% in the upstream region of the tip because the position of flow reattachment changes. On shroud, the effect of tip leakage vortex on the shroud as well as tip gap entering flow changes as the blade position changes. Thus, significantly different heat transfer patterns are observed with various blade positions and the periodic variation of heat transfer is expected with the blade rotation.

환형 캐스케이드 내 고정된 터빈 블레이드 및 슈라우드에서의 열/물질전달 특성 (II) - 끝단 필 슈라우드 - (Heat/Mass Transfer Characteristics on Stationary Turbine Blade and Shroud in a Low Speed Annular Cascade (II) - Tip and Shroud -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.495-503
    • /
    • 2005
  • Experiments were conducted in a low speed stationary annular cascade to investigate local heat transfer characteristics on the tip and shroud and the effect of inlet Reynolds number on the tip and shroud heat transfer. Detailed mass transfer coefficients on the blade tip and the shroud were obtained using a naphthalene sublimation technique. The turbine test section has a single stage composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has flat tip geometry and the mean tip clearance is about $2.5{\%}$of the blade chord. The inlet flow Reynolds number based on chord length and incoming flow velocity is changed from $1.0{\times}10^{5}\;to\;2.3{\times}10^{5}.$ to investigate the effect of Reynolds number. Flow reattachment after the recirculation near the pressure side edge dominates the heat transfer on the tip surface. Shroud surface has very intricate heat/mass transfer distributions due to complex flow patterns such as acceleration, relaminarization, transition to turbulent flow and tip leakage vortex. Heat/mass transfer coefficient on the blade tip is about 1.7 times as high as that on the shroud or blade surface. Overall averaged heat/mass transfer coefficients on the tip and shroud are proportional to $Re_{c}^{0.65}\;and\;Re_{c}^{0.71},$ respectively.

스퀼러팁을 이용한 가스터빈 내에서의 3차원 유동 및 열전달 특성에 관한 연구 (Numerical Investigation of Flow and Heat Transfer Characteristics on the Gas Turbine Blade with a Squealer Tip)

  • 정종훈;문영준;김진영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.159-162
    • /
    • 2008
  • In this paper, a numerical simulation of three-dimensional flow field and heat transfer coefficient distribution are conducted for two types of gas turbine blade with plane and squealer tips. The numerical results show that gas turbine blade with squealer tip considerably changes the flow structures near the tip regions of pressure and suction sides, so the overall heat transfer coefficients on the tip and shroud with squealer tip are lower than those with the plane tip blade. Finally, the effect of tip gap clearance on the flow field and heat transfer characteristics are investigated.

  • PDF

축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구 (Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan)

  • 유서윤;정철웅;김종욱;박병일
    • 한국음향학회지
    • /
    • 제43권1호
    • /
    • pp.103-111
    • /
    • 2024
  • 축류팬은 상대적으로 저압의 유동 영역에서 유동을 수송하기 위해 사용되며, 다양한 설계 변수에 대해 설계된다. 축류팬의 날개 끝 형상은 유동 및 소음 성능에 지배적인 역할을 수행하며 이에 대한 대표적인 유동 현상으로 날개 끝에서 발생하는 날개 끝 와류와 누설 와류가 있다. 이러한 3차원 유동 구조를 제어하기 위해 다양한 연구가 수행되어 왔으며, 항공기 분야에서 날개 끝 와류를 억제하고 효율을 증가시키기 위해 윙렛 형상이 개발되었다. 본 연구에서는 에어컨 실외기용 축류팬 날개에 적용된 윙렛 형상의 영향을 분석하기 위한 수치적, 실험적 연구를 수행하였다. 3차원 유동 구조 및 유동 소음을 수치적으로 분석하기 위해 unsteady Reynolds-Averaged Navier-Stokes(RANS) 방정식과 Ffocws-Williams and Hawkings(FW-H) 방정식을 전산유체역학 기법에 기초하여 수치 해석하였으며, 실험 결과와의 비교를 통해 수치 기법의 유효성을 검증하였다. 윙렛 형상에 따른 날개 끝 와류와 누설 와류의 형성의 차이를 3차원 유동장을 통해 비교하고, 그에 따른 공기역학적 성능을 정량적으로 비교하였다. 또한, 예측 유동장을 바탕으로 소음을 수치적으로 모사하여 윙렛 형상이 유동 소음 측면에 미치는 영향을 분석하였다. 대상 팬 모델의 시제품을 제작하여 유동 및 소음 실험을 실시하여 실제 성능을 정량적으로 평가하였다.

압력면익단소익이 터빈 동익 압력면스퀼러팁 하류의 팁누설유동 및 압력손실에 미치는 영향 (Effects of Pressure-Side Winglet at an Elevation of Tip Surface on the Tip-Leakage Flow and Aerodynamic Loss Downstream of a Turbine Blade Equipped with Pressure-Side Squealer Tip)

  • 천주홍;이상우
    • 대한기계학회논문집B
    • /
    • 제40권10호
    • /
    • pp.645-651
    • /
    • 2016
  • 본 연구에서는 압력면익단소익의 폭이 터빈 동익 압력면스퀼러팁 하류의 팁누설유동 및 압력손실에 미치는 영향에 대하여 연구하였다. 팁간극비 h/s = 1.36%에 대하여, 흡입면스퀼러의 높이는 $h_p/s=3.75%$로 일정하게 유지하고, 압력면익단소익의 폭은 w/p = 2.64%, 5.28%, 7.92%, 10.55% 등으로 변화시키면서 실험을 수행하였다. 일반적으로 압력면익단소익의 폭이 증가할수록, 통로와류 영역에서의 압력손실은 감소하였지만 팁누설유동 영역에서는 압력손실이 오히려 증가하였다. 그 결과 익단소익의 폭이 증가할수록, 질량평균 압력손실은 매우 소폭 감소하는 경향을 보였다. 본 연구 결과, 압력면스퀼러팁에 설치된 압력면익단소익은 압력손실 저감에 거의 기여를 하지 못함을 확인할 수 있었다.

Rotor Blade Sweep Effect on the Performance of a Small Axial Supersonic Impulse Turbine

  • Jeong, Sooin;Choi, Byoungik;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.571-580
    • /
    • 2015
  • In this paper, a computational study was conducted in order to investigate the rotor blade sweep effect on the aerodynamics of a small axial supersonic impulse turbine stage. For this purpose, three-dimensional unsteady RANS simulations have been performed with three different rotor blade sweep angles ($-15^{\circ}$, $0^{\circ}$, $+15^{\circ}$) and the results were compared with each other. Both NTG (No tip gap) and WTG (With tip gap) models were applied to examine the effect on tip leakage flow. As a result of the simulation, the positive sweep model ($+15^{\circ}$) showed better performance in relative flow angle, Mach number distribution, entropy rise, and tip leakage mass flow rate compared with no sweep model. With the blade static pressure distribution result, the positive sweep model showed that hub and tip loading was increased and midspan loading was reduced compared with no sweep model while the negative sweep model ($-15^{\circ}$) showed the opposite result. The positive sweep model also showed a good aerodynamic performance around the hub region compared with other models. Overall, the positive sweep angle enhanced the turbine efficiency.