• Title/Summary/Keyword: Tip Resistance

Search Result 292, Processing Time 0.022 seconds

Alternative Cone Tip Resistance Analysis Method using Rescaled Range Analysis

  • Yu, Chan;Yoon, Chun-Gyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.7
    • /
    • pp.37-45
    • /
    • 2005
  • In this study, R/S analysis which was proposed by Mandelbrot & Wallis (1969) was applied to evaluate the presence of the fractal property in the cone tip resistance of in-situ CPT data. Hurst exponents (H) were evaluated in the range of 0.660$\sim$0.990 and the average was 0.875. It was confirmed that a cone tip resistance data had the characteristic of fractals and it was expected that cone tip resistance data sets are well approximated by a fBm process with an Hurst exponent near 0.875. It was also observed that the boundary between layers were obviously identified as a result of R/S analysis and it will be usage in practices.

Wear Resistance Evaluation of Contact Tip according to Flux Cored Wire (플럭스 코어드 와이어에 따른 용접 중 콘택트 팁 내마모성 평가)

  • Kim, Dong-Yoon;Hwang, In-Sung;Kim, Dong-Cheol;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.42-46
    • /
    • 2013
  • The contact tip for flux cored arc welding has important functions to transmit the welding current to the wire and to guide the wire to molten pool. A damaged contact tip causes a productivity reduction and a welding quality problem. In this study, the welding experiments for the wear resistance of contact tip regarding flux cored wire types were performed. With two fold type and a seamless type flux cored wires, the wear rates of contact tips were compared. In addition, the wear rate was checked according to the contact tip position.

Relation between Cone Tip Resistance and Deformation Modulus of Cemented Sand (고결모래의 콘선단저항과 변형계수의 관계)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.53-63
    • /
    • 2008
  • In this study, the cone tip resistances of cemented sand are measured by performing a series of miniature cone penetration tests in large calibration chamber, and the relations with constrained modulus, unconfined compressive strength, and shear strength of cemented sand are suggested. Experimental results show that both the cone tip resistance and constrained modulus of sand increase with increasing cementation effect as well as relative density and confining stress. However, it is observed that the relative density and confining stress have more significant influence on cone tip resistance than constrained modulus of cemented sand. Since the cone penetration into the ground induces the damage of cementation, the cone tip resistance can't properly reflect the cementation effect of sand. An analysis based on the constrained modulus shows that the measured cone tip resistance underestimates the deformation modulus of cemented sand by about $70{\sim}85%$. In addition, this study establishes various relationships among the above soil properties from the regression analysis.

Temperature Compensation on the Cone Tip Resistance by Using FBG Temperature Transducer (FBG센서를 이용한 콘 선단저항력의 온도영향 보상)

  • Kim, Rae-Hyun;Lee, Jong-Sub;An, Shin-Whan;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.31-40
    • /
    • 2009
  • As the measurement of strain-gage type cone penetrometer is influenced by the temperature change during penetration, the temperature is a factor producing an error of the cone tip resistance. In this study, the 0.5 mm diameter temperature transducer and 7 mm diameter micro cone penetrometer are manufactured by using FBG sensors to evaluate the effect of temperature on the cone tip resistance. Design concepts include the cone configuration, sensor installation and the temperature compensation process. The test shows that the tip resistance measured by strain gauge is affected by the temperature change. The error of the tip resistance increases with an increase in temperature change, while the temperature effect on the tip resistance of FBG cone is effectively compensated by using FBG temperature transducer. Temperature compensated tip resistance of the strain gauge cone shows the good matched profile with FBG cone which performs real-time temperature compensation during penetration. This study demonstrates that the temperature compensation by using FBG sensor is an effective method to produce the more reliable cone tip resistance.

Design, Fabrication and Evaluation of Diamond Tip Chips for Reverse Tip Sample Scanning Probe Microscope Applications (탐침과 시편의 위치를 역전시킨 주사 탐침 현미경용 다이아몬드 탐침의 제작 및 평가)

  • Sugil Gim;Thomas Hantschel;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2024
  • Scanning probe microscopy (SPM) has become an indispensable tool in efforts to develop the next generation of nanoelectronic devices, given its achievable nanometer spatial resolution and highly versatile ability to measure a variety of properties. Recently a new scanning probe microscope was developed to overcome the tip degradation problem of the classic SPM. The main advantage of this new method, called Reverse tip sample (RTS) SPM, is that a single tip can be replaced by a chip containing hundreds to thousands of tips. Generally for use in RTS SPM, pyramid-shaped diamond tips are made by molding on a silicon substrate. Combining RTS SPM with Scanning spreading resistance microscopy (SSRM) using the diamond tip offers the potential to perform 3D profiling of semiconductor materials. However, damage frequently occurs to the completed tips because of the complex manufacturing process. In this work, we design, fabricate, and evaluate an RTS tip chip prototype to simplify the complex manufacturing process, prevent tip damage, and shorten manufacturing time.

A Study of Spot Welding Process to Reduce Spatter with the Hollow Tip (팁 선단에 중공이 있는 전극을 이용한 스패터 저감 스폿 용접에 관한 연구)

  • Jun, Jung-Sang;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.44-48
    • /
    • 2009
  • In automotive company, a lot of researchers have investigated for the spatterless welding process during last two decades. A spatter influences on the product quality such as strength and surface states. In this paper, a hollow tip is proposed for spatterless process. An optimal size of electrode hole is obtained from a weldability evaluation of each hole diameter. Through the cross section analysis, a phenomenon that molten metal moves in the hole which located between two workpiece is observed, and this makes spatterless welding process even though current is higher. Finally, widely acceptable weld area in lobe curve is obtained by using hollow tip as compare with conventional no hollow tip. In this paper, spatterless resistance spot welding with improvement weldability and productivity is proposed by using hollow tip.

Effect of wear of Contact Tips to Welding Consumable for Gas Metal Arc Welding (가스메탈아크용접에서 콘택트팁의 마모에 미치는 용접재료의 영향)

  • Kim, In-Gyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.860-864
    • /
    • 2012
  • The contact tip is higher the wear of resistance and the longer life are demanded to GMA welding process. In this study, four different contact tips with three different compositions by two wires were evaluated their wear resistance by measuring in every one hour the area of enlarged hole at the exit side during actual wleding. Experimental results clearly showed that the Cr-containing tips strengthened by precipitation hardening have much better resistance to wear than those made by work hardening. In addition, flux cored wire is excellent abrasion resistance test results showed. Based on these results, the domestic industry, the life of the contact tip to know will be used as basic data.

Detection of thin-layered soil using CRPT in soft soil (CRPT를 이용한 연약지반 협재층 탐지)

  • Yoon, Hyung-Koo;Kim, Joon-Han;Kim, Rae-Hyun;Choi, Yong-Kyu;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.117-125
    • /
    • 2008
  • The detection of thin-layered soil is important in soft soils to evaluate the soil behavior. The smaller diameter cone penetrometer have been commonly used to detect the layer with increasing sensitivity. The objective of this study is to detect the thin-layered soil using cone resistance and electrical resistance. The cone resistivity penetration test (CRPT) is developed to evaluate the cone tip resistance and electrical resistance at the tip. The CRPT is a micro-cone which has a $0.78cm^2$ in projected area. The application test is conducted in a laboratory large-scale consolidometer (calibration chamber). The kaolinite, sand and water are mixed to make the specimen at the liquid limit of 46% using a slurry mixer. It takes two months for the consolidation of the specimen. After consolidation, the CRPT test is carried out. Furthermore the standard CPT results are compared with the electrical resistance measured at the tip in the field. This study suggests that the CRPT may be a useful tool for detecting thin-layers in soft soils.

  • PDF

Characteristics of MEMS Probe Tip with Multi-Rhodium Layer (이중 로듐 층을 갖는 멤스 프로브 팁의 특성)

  • Park, Dong-Gun;Park, Yong-Joon;Lim, Seul-Ki;Kim, Il;Shin, Sang-Hun;Cho, Hyun-Chul;Park, Seung-Pil;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.81-88
    • /
    • 2012
  • Probe tip, which should have not only superior electrical characteristics but also good abrasion resistance for numerous contacts with semiconductor pads to confirm their availability, is essential for MEMS probe card. To obtain good durability of probe tip, it needs thick and crack-free rhodium layer on the tip. However, when the rhodium thickness deposited by electroplating increased, unwanted cracks by high internal stress led to serious problem of MEMS probe tip. This article reported the method of thick Rh deposition with Au buffer layer on the probe tip to overcome the problem of high internal stress and studied mechanical and electrical properties of that. MEMS probe tip with double-Rh layer had good contact resistance and durability during long term touch downs.