• Title/Summary/Keyword: Tip Leakage

Search Result 172, Processing Time 0.031 seconds

Effects of Incidence on Aerodynamic Losses in the Tip-Leakage Flow Region of a High-Turning Turbine Rotor Blade (입사각이 터빈 동익 팁누설유동 영역에서의 압력손실에 미치는 영향)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of incidence angle on the three-dimensional flow and aerodynamic loss in the tip leakage flow region downstream of a turbine rotor cascade has been investigated for two tip gap-to-chord ratios of h/c=0.0% (no tip gap) and 2.0%. The incidence angle is changed to be $i=-10^{\circ}$, $0^{\circ}$, and $5^{\circ}$. The results show that for $i=5^{\circ}$, secondary flows including the passage vortex are intensified noticeably, and there is a strong interaction between the passage and tip leakage vortices. For $i=-10^{\circ}$, however, the passage vortex is weakened significantly, so that there exists only a strong leakage-jet-like secondary flows near the casing wall. For h/c=0.0% and 2.0%, aerodynamic loss tends to increase with increasing i from $-10^{\circ}$ to $5^{\circ}$. A small increment of i in its positive incidence range results in a remarkable aerodynamic loss increase, while increasing i in the negative incidence range leads to a small change in the aerodynamic loss generation.

Numerical Investigation on Internal Flow Field of a Single-Stage Transonic Axial Compressor (수치해석을 활용한 1단 천음속 압축기 내부 유동장 분석)

  • Song, Ji-Han;Hwang, Oh-Sik;Park, Tae Choon;Lim, Byung-Jun;Yang, Soo-Seok;Kang, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • Numerical simulations on a single stage transonic compressor which is developed by Korea Aerospace Research Institute are carried out and their results are compared with experimental data for cross validations. Comparisons between experimental data and numerical simulation results show good agreements on a performance curve, static pressure and total pressure distributions. CFD results show that there is a clear interaction between tip leakage flow and normal shock in the rotor passage. Tip leakage flows are almost dissipated after the strong normal shock and it forms a strong recirculation near the blade tip. Also a large separation region grows on the suction surface just after the normal shock. As the pressure ratio and blade loading increase, the normal shock line moves upstream and it starts to deviate from the blade leading edge. Then the tip leakage flow does not overcome the strong adverse pressure gradient and flow blockage originated from the tip recirculation region. As a result, the tip leakage flow heads for the neighboring blade leading edge, which results in a compressor stall.

Flow Characteristics of Wake Flow with Relation to a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan (유량에 따른 축류홴의 익단누설와류 및 후류 특성)

  • Kim Kwang-Yong;Jang Choon-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.322-329
    • /
    • 2005
  • The flow characteristics in the blade passage and in the wake region of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near stall condition, which results in large blockage compared to that at the design condition. Although the wake flow downstream of the rotor blade is clearly measured at all operating conditions, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is mainly observed at a higher flow condition than the design flow rate.

Experimental Study on the Effects of Upstream Periodic Wakes on Cascade with Tip Clearance (주기적 후류가 누설유동이 존재하는 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Im, Ji-Hyun;Kim, Dong-Hyun;Joo, Won-Goo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1986-1991
    • /
    • 2003
  • To research on change of blade row flow field with tip clearance caused by upstream periodic wake, an apparatus that generate periodic wake through traversing cylinders were installed. Then how movement of upstream wake affect cascade flow and tip leakage flow were measured. Cylinder was installed in front of 50% of chord length, and traversing velocity was calculated at approximately 11.7m/s regarding inlet velocity and chord length. To measure three-dimensional velocity of flow inside blade row, single slanted hot-wire was used. From the results, when the periodic wake is inserted, the flow inside of cascade is dominantly affected by vortex that is generated from cylinder. This periodic wake affects passage vortex and tip leakage vortex.

  • PDF

Numerical Analysis of Tip Leakage Flows in Axial Flow Turbine Rotors (축류터빈 동익 내부의 누설유동에 관한 수치해석)

  • Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • Numerical analysis of three-dimensional viscous flow-fields in the turbine rotor passages was carried out to investigate flow physics including the interaction between secondary vortices, tip leakage vortex, and the rotor wake. The blade tip geometry was accurately modeled adopting the embedded H grid system. An explicit four-stage Runge-Kutta scheme was used for the time integration of both the mean flow and turbulence equations. The computational results for the entire turbine rotor flows, particularly the tip clearance flow and the secondary flows, were interpreted and compared with the experimental data from the Penn State turbine stage. The predictions for major features of the flow field have been found to be in good agreement with the experimental data.

  • PDF

Numerical Analysis of Tip Leakage Flows in Axial Flow Turbine Rotors (축류터빈 동익 내부의 누설유동에 관한 수치해석)

  • Chung H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.171-175
    • /
    • 2003
  • Numerical analysis of three-dimensional viscous flow-fields in the turbine rotor passages is carried out to investigate flow physics including the interaction between secondary vortices, tip leakage vortex, and the rotor wake. The blade tip geometry is accurately modeled adopting the embedded H grid topology. An explicit four-stage Runge-Kutta scheme is used for the time integration of both the mean flow and turbulence equations. The computational results for the entire turbine rotor flows, particularly the tip clearance flow and the secondary flows, are interpreted and compared with the experimental data from the Penn State turbine stage. Good agreement between the experimental data and the numerical prediction was achieved in the sense of the major features of the flow fields.

  • PDF

Numerical simulation Analysis of Tip Clearance Flow in a Centrifugal Compressor

  • Zhou, Shuiqing;Wang, Jun;Wang, Chuanghua;Li, Ye
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • In order to research the relationship between the tip clearance and leakage flow of centrifugal compressor, a high speed centrifugal compressor was investigated by using CFD. A numerical study on the effect of four different rotor tip clearance sizes of centrifugal compressor, which were 0.5times, 1 times, 1.5times and 2.0times of the design tip clearance, was carried out. Efficiency and pressure ratio curves were obtained under different mass flow. The reasons of the clearance vortex and the factors of vortex size were analyzed. The result indicated that with the increase of tip clearance size, the performance of the compressor changed obviously, the performance parameters such as efficiency and pressure ratio tended to decrease obviously. While, the leakage flow does not always lead to leak vortex. The strength of the vortex increased with the tip clearance. The size of leak vortex was affected by the pressure difference between the suction side and the pressure side of blade tip.

Numerical investigations of tip clearance flow characteristics of a pumpjet propulsor

  • Lu, Lin;Gao, Yuefei;Li, Qiang;Du, Lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.307-317
    • /
    • 2018
  • In this study, numerical investigations of the tip clearance flow characteristics of a pumpjet propulsor based on Computational Fluid Dynamics (CFD) method have been presented. The Zwart-Gerber-Belamri (Z-G-B) cavitation model based on Reynolds Averaged Navier-Stokes (RANS) method is employed. The structured gird is applied. The formation and development of the tip clearance flows has been investigated and presented. The structure of the tip leakage vortex has been shown. The radial distributions of different velocity components with different Span along the axial direction have been carried out to present the influence of the tip clearance flow on the main flow. In addition, the influences of the tip clearance size on the pumpjet propulsor performance, including the impact on the velocity flow fields and the cavitation characteristic, have been presented.

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery (축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1655-1666
    • /
    • 2003
  • It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.

Flow Analysis in the Tip Clearance of Axial Flow Rotor Using Finite-Element Large-Eddy Simulation Method (유한요소 LES법에 의한 축류 회전차 팁 틈새의 유동해석)

  • Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.686-695
    • /
    • 2009
  • Flow characteristics in linear axial cascade have been studied using large eddy simulation(LES) based on finite element method(FEM) to investigate details of the leakage flow in the tip clearance of axial flow rotor. STAR-CD(FVM) and PAT-Flow(FEM) have been adopted to solve the Navier-Stokes equations for the simulation of the unsteady turbulent flow. Numerical results from the present study have been compared with the existing experimental results to investigate a tip clearance effect on velocity profile and static pressure distribution on blade surface at various spanwise positions. Both simulation results agree well with the experimental data. However, it has been shown that the results of finite-element large-eddy simulation agree better with experimental data than $k-{\varepsilon}$ turbulent model based on finite volume method regarding the tip vortex geometry and static pressure distribution at the center of the tip vortex core. As a result of this study, it is shown that finite-element large-eddy simulation method can predict more exactly on the tip leakage vortex flow and behind flow field.