• Title/Summary/Keyword: Tin impregnation method

Search Result 6, Processing Time 0.022 seconds

Some Physical Properties of Regeneration Cemented Carbide Using Recycling WC Fine Powder by Tin Impregnation Method

  • Nakamura, Mitsuru;Lee, Sang-Hak;Kim, Ha-Young
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.661-662
    • /
    • 2006
  • Development of recycling method at cemented carbide scraps was researched. Some properties of recycled cemented carbides were investigated. Recycled WC fine powder suffered the surface oxidation. Therefore it was necessary to be done by reduction treatment at 1073K-3.6ks under hydrogen atmosphere. When sintering condition at 1673K-3.6ks was treated under vacuum condition, it gained the deflective strength of about 90%, and gained hardness and sintering density about same value compared with commercial alloys. As a result, it was able to recycle only by 7 processes.

  • PDF

Pd-doped $SnO_2$-based oxide semiconductor thick-film gas sensors prepared by three different catalyst-addition processes

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.72-77
    • /
    • 2009
  • Three different procedures for adding Pd compounds to $SnO_2$ particles have been investigated. These processes are: (1) coprecipitation; (2) dried powder impregnation; and (3) calcined powder impregnation. The microstructures of $SnO_2$ particles have been analyzed by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). In the coprecipitaion method, the process does not restrain the growth of $SnO_2$ particles and it forms huge agglomerates. In the dried powder impregnation method, the process restrains the growth of $SnO_2$ particles and the surfaces of the agglomerates have many minute pores. In the calcined powder impregnation method, the process restrains the growth of $SnO_2$ particles further and the agglomerates have a lot more minute pores. The sensitivity ($S=R_{air}/R_{gas}$) of the $SnO_2$ gas sensor made by the calcined powder impregnation process shows the highest value (S = 21.5 at 5350 ppm of $C_3H_8$) and the sensor also indicates the lowest operating temperature of around $410^{\circ}C$. It is believed that the best result is caused by the plenty of minute pores at the surface of the microstructure and by the catalyst Pd that is dispersed at the surface rather than the inside of the agglomerate. Schematic models of Pd distribution in and on the three different $SnO_2$ particles are presented.

Characteristics of methane reforming with carbon dioxide using transition metal catalyts (전이금속 촉매를 이용한 이산화탄소와 메탄의 개질 특성)

  • Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.644-650
    • /
    • 2021
  • This study characterized the reforming of methane with carbon dioxide, which is a major cause of global warming. The methane decomposition reaction with carbon dioxide was carried out using transition metal catalysts. The reactivity of tin was lower than that of a transition metal, such as nickel and iron. Most of the decomposition reaction occurred in the solid state. The melting point of tin is 505.03 K. Tin reacts in a liquid phase at the reaction temperature and has the advantage of separating carbon produced by the decomposition of methane from the liquid tin catalyst. Therefore, deactivation due to the deposition of carbon in the liquid tin can be prevented. Methane decomposition with carbon dioxide produced carbon monoxide and hydrogen. Ni was used to promote the catalyst performance and enhance the activity of the catalyst and lifetime. In this study, catalysts were synthesized using the excess wet impregnation method. The effect of the reaction temperature, space velocity was measured to calculate the activity of catalysts, such as the activation energy and regeneration of catalysts. The carbon-deposited tin catalyst regeneration temperature was 1023 K. The reactivity was improved using a nickel co-catalyst and a water supply.

Heterogeneous Porous WO3@SnO2 Nanofibers as Gas Sensing Layers for Chemiresistive Sensory Devices

  • Bulemo, Peresi Majura;Lee, Jiyoung;Kim, Il-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.345-351
    • /
    • 2018
  • We employed an unprecedented technique to synthesize porous $WO_3@SnO_2$ nanofibers exhibiting core-shell and fiber-in-tube configurations. Firstly, 2-methylimidazole was uniformly incorporated in as-spun nanofibers containing ammonium metatungstate hydrate and the sacrificial polymer (polyacrylonitrile). Secondly, the 2-methylimidazole on the surfaces of nanofibers was complexed with tin(II) chloride ($SnCl_2$) via simple impregnation of the as-spun nanofibers in ethanol containing tin(II) chloride dihydrate ($SnCl_2{\cdot}2H_2O$). The presence of vacant p-orbitals in tin (Sn) and the nucleophilic nitrogen on the imidazole ring allowed for the reaction between $SnCl_2$ and 2-methylimidazole, forming adducts on the surfaces of the as-spun nanofibers. The calcination of these nanofibers resulted in porous $WO_3@SnO_2$ nanofibers with a higher surface area ($55.3m^2{\cdot}g^{-1}$) and a better response to 1-5 ppm of acetone than pristine $SnO_2$ NFs synthesized using a similar method. An improved response to acetone was achieved upon functionalization of the $WO_3@SnO_2$ nanofibers with catalytic palladium nanoparticles. This work demonstrates the potential application of $WO_3@SnO_2$ nanofibers as sensing layers for chemiresistive sensory devices for the detection of acetone in exhaled breath.

Recycling Process of WC Fine Powder Contained by Cemented Carbides Parts in JAPAN

  • Mitsuru Nakamura;Kim, Ha-Young;Hwang, Sun-Hyo
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.297-298
    • /
    • 1999
  • Cemented carbides material (WC-Co hard alloy) were recognized very important and expensive tool or die assembly parts because of compose for the main elements of rare metal (W and Co etc). This research was developed to separate and recover of WC fine powder contained by WC-Co materials. Recycling process was a new method named by the Tin impregnation for decobaltification on cemented carbides. This reaction occurred to product a brittle Co-Sn intermetallic compounds, thereafter it carried out by acid cleaning solution and physical milling or powdering. New process was able to recover about 60% WC fine powder from 1 to 5 ${\mu}{\textrm}{m}$.

  • PDF

Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array (후막 센서 어레이를 이용한 화학 작용제 분류)

  • Kwak Jun-Hyuk;Choi Nak-Jin;Bahn Tae-Hyun;Lim Yeon-Tae;Kim Jae-Chang;Huh Jeung-Soo;Lee Duk-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.81-87
    • /
    • 2004
  • Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.