본 논문은 시계열 데이터에 존재하는 이상값을 정상값으로 변환하는 새로운 데이터 보정기법을 제안한다. 최근 IT기술의 발전으로 센서를 통해 방대한 시계열 데이터가 수집되고 있다. 하지만 센서의 고장, 비정상적 환경으로 인해, 대부분의 시계열 데이터는 다수의 이상값을 포함할 수 있다. 이상값이 포함된 원천 데이터를 그대로 사용하여 예측모델을 구축하는 경우, 고신뢰도의 예측 서비스가 실현되기 어렵다. 이에 본 논문은 LSTM-GAN 모델을 활용하여 원천 시계열 데이터에 존재하는 이상값을 탐지하고, DTW(Dynamic Time Warping) 및 GAN 기법을 결합하여 분할된 윈도우 단위로 이상값을 정상값으로 보정하는 기법을 제안한다. 기본 아이디어는 탐지된 이상값이 포함된 윈도우에 인접한 정상 분포 데이터의 통계정보를 DTW에 적용하여 연쇄적으로 GAN 모델을 구축하여 정상적 시계열 데이터를 생성하는 것이다. 오픈 NAB 데이터를 활용한 실험을 통해, 우리는 제안 기법이 기존 2개의 보정기법보다 성능이 우수함을 보인다.
주식 시장에서 안정적으로 높은 수익을 얻기 위하여 많은 트레이딩 알고리즘에 대한 연구들이 이루어졌다. 트레이딩 알고리즘들이 미국 주식시장의 거래량에서 차지하는 비율은 80 프로가 넘을 정도로 많이 사용된다. 많은 연구에도 불구하고 항상 좋은 성능을 나타내는 트레이딩 알고리즘은 존재하지 않는다. 즉, 과거에 좋은 성능을 보이는 알고리즘이 미래에도 좋은 성능을 보인다는 보장이 없다. 그 이유는 주가에 영향을 주는 요인은 매우 많고, 미래의 불확실성도 존재하기 때문이다. 따라서 본 논문에서는 알고리즘들의 수익률에 대한 과거 기록을 바탕으로 미래의 수익률을 잘 예측하고 수익률도 높을 것으로 추정되는 알고리즘을 선택하는 TimeGAN을 활용한 모델을 제안한다. LSTM기법은 미래 시계열 데이터의 예측이 결정론적임에 반하여 TimeGAN은 확률적이다. TimeGAN의 확률적인 예측의 이점은 미래에 대한 불확실성을 반영하여 줄 수 있다는 점이다. 실험 결과로써, 본 논문에서 제안한 방법은 적은 변동성으로 높은 수익률을 달성하고, 여러 다수의 비교 알고리즘에 비해 우수한 결과를 보인다.
Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.
최근 빅데이터 분석, 인공지능, 기계학습 등의 발전으로 인해서 데이터를 과학적으로 분석하는 기술이 발전하고 있으며 이는 의사결정 문제를 최적으로 해결해주고 있다. 그러나 특정 분야의 경우에는 데이터의 양이 부족해서 과학적 방식에 적용하는 것이 어렵다. 예컨대 부동산과 같은 데이터는 데이터 발표 시점이 최근이거나 비 유동성 자산이다 보니 발표 주기가 긴 경우가 많다. 따라서 본 연구에서는 이런 문제점을 극복하기 위해서 TimeGAN 모형을 통해 기존의 시계열의 확장 가능성에 대해서 연구하고자 한다. 이를 위해 부동산과 관련된 총 45개의 시계열을 데이터 셋에 맞게 2012년부터 2021년까지 주 단위로 데이터를 수집하고 시계열 간의 상관관계를 고려해서 총 15개의 최종 시계열을 선정한다. 15개의 시계열에 대해서 TimeGAN 모형을 통해 데이터 확장을한 결과, PCA 및 T-SNE 시각화 알고리즘을 통해 실제 데이터와 확장 데이터 간의 통계적 분포가 유사하다는 것을 확인할 수 있었다. 따라서 본 논문을 통해서 데이터의 과적합 또는 과소적합이라는 한계점을 극복할 수 있는 다양한 실험이 연구되기를 기대한다.
This study presents a method to restore an optical satellite image with distortion and occlusion due to fog, haze, and clouds to one that minimizes degradation factors by referring to the same type of peripheral image. Specifically, the time and cost of re-photographing were reduced by partially occluding a region. To maintain the original image's pixel value as much as possible and to maintain restored and unrestored area continuity, a simulation restoration technique modified with the Cycle Generative Adversarial Network (CycleGAN) method was developed. The accuracy of the simulated image was analyzed by comparing CycleGAN and histogram matching, as well as the pixel value distribution, with the original image. The results show that for Site 1 (out of three sites), the root mean square error and R2 of CycleGAN were 169.36 and 0.9917, respectively, showing lower errors than those for histogram matching (170.43 and 0.9896, respectively). Further, comparison of the mean and standard deviation values of images simulated by CycleGAN and histogram matching with the ground truth pixel values confirmed the CycleGAN methodology as being closer to the ground truth value. Even for the histogram distribution of the simulated images, CycleGAN was closer to the ground truth than histogram matching.
최근 인테리어에 관심을 가지는 인구가 증가함에 따라 세계적으로 인테리어 시장이 크게 성장하고 있으며, 글로벌 인테리어 업체들은 다양한 인테리어 요소에 대한 시뮬레이션 서비스를 개발하여 제공하고 있다. 벽지의 디자인은 가장 중요한 인테리어 요소임에도 불구하고, 기존 벽지 디자인 시뮬레이션 서비스들은 예상되는 결과물과 실제 결과물 간 차이, 긴 시뮬레이션 작업시간, 전문적인 기술의 필요 등의 단점으로 인해 사용에 어려움이 있다. 본 논문에서는 벽지 인테리어 시뮬레이션을 위한 Cycle GAN(: Generative Adversarial Networks) 기반의 벽지 이미지 변환 기법을 제안한다. 제안하는 기법은 다양한 모양의 벽지가 사용된 인테리어 이미지 데이터를 기반으로 모델을 학습하여, 사용자에게 짧은 시간 내에 벽지 인테리어 시뮬레이션을 제공할 수 있다.
최근 데이터셋을 효율적으로 구축하는 방법으로 데이터 증강 기법과 관련하여 많은 연구가 이루어지고 있다. 이 중 대표적인 데이터 증강 기법은 생성적 적대 신경망(Generative Adversarial Network:GAN)을 활용하는 방법이며, 이는 생성자와 판별자를 서로 경쟁 학습시킴으로써 진짜 데이터와 유사한 데이터를 생성해내는 기법이다. 그러나, GAN을 학습할 때 환경 및 진행 정도에 따라 생성되는 유사 데이터 중에서 픽셀이 깨지는 파손 영상이 발생하는 경우가 있으며, 이러한 영상은 데이터셋으로 활용할 수 없고 학습 시간을 증가시키는 원인이 된다. 본 논문에서는 GAN 학습 과정에서 생성되는 영상 데이터의 히스토그램을 분석하여 이러한 파손 영상을 선별해내는 알고리즘을 개발하였으며, 기존 GAN에서 생성되는 영상과 비교해 본 결과 파손 영상의 비율을 33.3배(3,330%) 감소시켰다.
심층 생성 모델의 일종인 Generative Adversarial Network(GAN)과 Variational AutoEncoder(VAE)는 비병렬 학습 데이터를 사용한 음성 변환에 새로운 방법론을 제시하고 있다. 특히, Conditional Cycle-Consistent Generative Adversarial Network(CC-GAN)과 Cycle-Consistent Variational AutoEncoder(CycleVAE)는 다수 화자 사이의 음성 변환에 우수한 성능을 보이고 있다. 그러나, CC-GAN과 CycleVAE는 비교적 적은 수의 화자를 대상으로 연구가 진행되어왔다. 본 논문에서는 100 명의 한국어 화자 데이터를 사용하여 CC-GAN과 CycleVAE의 음성 변환 성능과 확장 가능성을 실험적으로 분석하였다. 실험 결과 소규모 화자의 경우 CC-GAN이 Mel-Cepstral Distortion(MCD) 기준으로 4.5 % 우수한 성능을 보이지만 대규모 화자의 경우 CycleVAE가 제한된 학습 시간 안에 12.7 % 우수한 성능을 보였다.
캐릭터 애니메이션 분야에서 목표 지향적 이동을 위해 원하는 궤적을 재현하는 것은 항상 어려운 과제이다. 생성 모델을 사용하는 데이터 기반 방법은 명시적인 조건 없이 긴 동작 시퀀스를 예측하는 효율적인 방법 중 하나이다. 이러한 방법은 고품질의 결과물을 생성해내지만, 멀리 있는 목표물을 무작위로 타격하는 것처럼 더 어려운 상황의 모션을 합성(synthesis)에 있어서는 제한될 수 있다. 하지만 이는 모션 데이터 클립을 모방하는 GAN Discriminator 를 사용하고 강화학습을 통해 해결할 수 있다. 본 연구는 캐릭터들이 GAN 기반 접근법과 리워드 설계를 통해 복싱을 구현하는 것을 목표로 한다. 논문에서 사용된 두 가지의 최신 연구인 Adversarial Motion Prior 와 Adversarial Skill Embedding 에 대해 비교실험하며, 또한 복싱을 경쟁 스포츠에 적용하기 위하여 멀티 에이전트 강화 학습을 위한 대규모 self-play 프레임워크인 TimeChamber 를 활용한다.
Segmenting OCT retinal images into layers is important to diagnose and understand the progression of retinal diseases or identify potential symptoms. The task of manually identifying these layers is a difficult task that requires a lot of time and effort even for medical professionals, and therefore, various studies are being conducted to automate this using deep learning technologies. In this paper, we use cGAN-based neural network to automatically segmenting OCT retinal images into seven terrain-type regions defined by six layer boundaries. The network is composed of a Segnet-based generator model and a discriminator model. We also proposed a dynamic programming algorithm for refining the outputs of the network. We performed experiments using public OCT image data set and compared its performance with the Segnet-only version of the network. The experimental results show that the cGAN-based network outperforms Segnet-only version.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.