• Title/Summary/Keyword: Time-varying Channels

Search Result 136, Processing Time 0.032 seconds

Block-Mode Lattice Reduction for Low-Complexity MIMO Detection

  • Choi, Kwon-Hue;Kim, Han-Nah;Kim, Soo-Young;Kim, Young-Il
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.110-113
    • /
    • 2012
  • We propose a very-low-complexity lattice-reduction (LR) algorithm for multi-input multi-output detection in time-varying channels. The proposed scheme reduces the complexity by performing LR in a block-wise manner. The proposed scheme takes advantage of the temporal correlation of the channel matrices in a block and its impact on the lattice transformation matrices during the LR process. From this, the proposed scheme can skip a number of redundant LR processes for consecutive channel matrices and performs a single LR in a block. As the Doppler frequency decreases, the complexity reduction efficiency becomes more significant.

Design of Adaptive Reed-Solomon Encoder for Multi QoS Services or Time-Varying Channels (다중 QoS 서비스와 시변 채널을 위한 적응형 RS 부호기의 설계)

  • 공민한;송문규;김응배;정찬복
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.113-116
    • /
    • 2001
  • Reed-Solomon(RS) code is the most powerful burst error correcting code. In Ois paper, the architecture for the adaptive RS encoder adaptable for multi QoS requirements or time-varying channel environments has been designed. In the adaptive RS code, the message length k and the error correction capability t are allowed to be variable so that the block length n is also variable. We proposed the architecture of the adaptive RS encoder by designing the optimal structure of Galois fields multiplier with comparison of fixed multiplier and variable multiplier. The proposed architecture is implemented in VHDL and verified with the simulation tool

  • PDF

Adaptive Multi-Antenna Channel Estimation Scheme for Uplink Multiuser Environments (다중사용자 상향링크 환경을 위한 적응형 다중안테나 채널추정 기법)

  • Kim, Kyung Jun;Choi, Kyung Jun;Lee, Jinnyeong;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1293-1295
    • /
    • 2015
  • In this letter, an adaptive multi-antenna channel estimation scheme is proposed for uplink multiuser environments such as LTE-A systems to accurately estimate time-varying channels within an affordable complexity. It is confirmed that the proposed channel estimator can achieve accurate channel tracking performance even when various time-varying channel environments and traffic patterns are provided.

Distance Measure for Biased Probability Density Functions and Related Equalizer Algorithms for Non-Gaussian Noise (편이 확률밀도함수 사이의 거리측정 기준과 비 가우시안 잡음 환경을 위한 등화 알고리듬)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1038-1042
    • /
    • 2012
  • In this paper, a new distance measure for biased PDFs is proposed and a related equalizer algorithm is also derived for supervised adaptive equalization for multipath channels with impulsive and time-varying DC bias noise. From the simulation results in the non-Gaussian noise environments, the proposed algorithm has proven not only robust to impulsive noise but also to have the capability of cancelling time-varying DC bias noise effectively.

Improved Code Timing Estimator for DS-CDMA Systems Using Correlated Antennas in Time-Varying Fading Channels (시변 페이딩 채널에서 상관관계가 있는 안테나를 사용하는 DS-CDMA 통신 시스템을 위한 개선된 최대가능도 코드 타이밍 추정기)

  • Kim Sang-Choon;Jeong Bong-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.910-920
    • /
    • 2006
  • We consider the problem of estimating a code-timing of DS-CDMA signal in antenna array systems in the presence of flat fading channels and near-far environments. We derive an approximate maximum likelihood algorithm of estimating the code-timing of a desired user for DS-CDMA systems to better utilize the time-varying characteristics of the fading process. In the development of code timing estimator, the given observation bits are divided into many sets of sub-windows with each sufficiently large. The proposed method uses sub-windows with equal size associated with the coherence time of channel fading. The alternative approach is that without the estimation of the fading rate, the sufficiently given observation bits are simply separated into two consecutive sets of sub-windows. The derivation of the proposed algorithms is based on multiple antennas partially correlated in space. The impacts of spatial fading correlation on acquisition and men acquisition time performance of the proposed algorithms are also examined.

Analysis of Delay Distribution and Rate Control over Burst-Error Wireless Channels

  • Lee, Joon-Goo;Lee, Hyung-Keuk;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.355-362
    • /
    • 2009
  • In real-time communication services, delay constraints are among the most important QoS (Quality of Service) factors. In particular, it is difficult to guarantee the delay requirement over wireless channels, since they exhibit dynamic time-varying behavior and even severe burst-errors during periods of deep fading. Channel throughput may be increased, but at the cost of the additional delays when ARQ (Automatic Repeat Request) schemes are used. For real-time communication services, it is very essential to predict data deliverability. This paper derives the delay distribution and the successful delivery probability within a given delay budget using a priori channel model and a posteriori information from the perspective of queueing theory. The Gilbert-Elliot burst-noise channel is employed as an a Priori channel model, where a two-state Markov-modulated Bernoulli process $(MMBP_2)$ is used. for a posteriori information, the channel parameters, the queue-length and the initial channel state are assumed to be given. The numerical derivation is verified and analyzed via Monte Carlo simulations. This numerical derivation is then applied to a rate control scheme for real-time video transmission, where an optimal encoding rate is determined based on the future channel capacity and the distortion of the reconstructed pictures.

An Equalization Technique for OFDM Systems in Time-Variant Multipath Channels (시변 다중경로 페이딩 채널에서의 OFDM 등화기법)

  • Jeon, Won-Gi;Chang, Kyung-Hi;Cho, Yong-Soo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.9-18
    • /
    • 1998
  • In this paper, an equalization technique for OFDM(orthogonal frequency division multiplexing) in a time-variant multipath fading environment is described. A loss of subchannel orthogonality due to time-varying multipath fading channels leads to interchannel interference (ICI) which increases the error floor in proportion to Doppler frequency. A simple frequency-domain equalizer which can compensate the effect of ICI caused by time variation of multipath fading channel is proposed by modifying the previous frequency-domain equalization technique with taking into account only the ICI terms significantly affecting the error performance. The effectiveness of the proposed approach is demonstrated via computer simulation by applying it to OFDM systems when the multipath fading channel is slowly time variant.

  • PDF

Relationships between Diversity Techniques and Channel Coding Rates for SC-FDMA Systems (SC-FDMA 시스템에서의 다이버시티 기술과 채널부호화율의 관계)

  • Rim, Min-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.1-11
    • /
    • 2009
  • In OFDMA or SC-FDMA systems one can generate time varying channels or frequency selective channels using multiple transmit antennas to achieve diversity without special space-time processing at the receivers. While low channel coding rate needs to be used for distributed-allocation SC-FDMA systems with a phase rolling technique to produce time fluctuation, relatively high channel coding rate can be used when cyclic delay diversity is used to increase frequency selectivity assuming quasi-static channel. On the other hand, for block-hopping SC-FDMA systems there is no significant difference between two diversity techniques in terms of optimal channel coding rates.

A Study on Channel Equalization in Time Varying Channels for Mobile Communication System (이동통신 시스템의 Time Varying 채널 환경에서 채널 등화에 관한 연구)

  • Park No-Jin;Kim Dong-Ok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The third generation mobile communications system requiring the reliable multimedia data transmission has provided with the reliable voice, data and video services over the variable propagation environment. However the broadband wireless multiple access technologies cause Inter Symbol Interference(ISI) or Multiple Access Interference(MAI) to degrade the performance of CDMA(Code Division Multiple Access) system. Constant Modulus Algorithm which is frequently used as the adaptive blind equalizers to remove the interfering signal has ill-convergence phenomenon without proper initialization. In this paper, new blind equalization method based on conventional CMA is proposed to improve the channel efficiency, and through computer simulation this is tested over the time varying fading environment of mobile communication system. consequently, new blind equalization method into concatenated Kalman filter with CMA is verified better than conventional CMA through adopting minimum mean square errors and eye-pattern obtained from algorithm are compared.

A low complexity ZF Equalization for OFDM Systems over Time-varying Channels (OFDM 시스템을 위한 복잡도가 감소된 ZF 등화기법)

  • Park, Ji-Hyun;Hwang, Seung-Hoon;Whang, Keum-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • In orthogonal frequency division multiplexing (OFDM) system the time selectivity of wireless channel introduces intercarrier interference (ICI), which degrades system performance in proportion to Doppler frequency. To mitigate the ICI effect, we can generally employ a classical zero-forcing (ZF) equalizer. However, the ZF scheme requires an inverse of a large matrix, which results in prohibitively high computational complexity. In this paper, we propose a low complexity ZF equalization scheme for suppressing the ICI caused by highly time-varying channels in OFDM systems. From the fact that the ICI on a subcarrier is mainly caused by several neighboring subcarriers, the proposed scheme exploits a numerical approximation for matrix inversion based on Neumann's Series (truncated second order). To further improve performance, the partial ICI cancellation technique is also used with reduced complexity. Complexity analysis and simulation results show that the proposed scheme provides the advantage of reducing computational complexity significantly, while achieving almost the same performance as that of the classical ZF a roach.