One of the critical issues in a sensor network concerns the detection of changes in data streams. Recently presented change detection schemes primarily use a sliding window model to detect changes. In such a model, a distance function is used to compare two sliding windows. Therefore, the performance of the change detection scheme is greatly influenced by the distance function. With regard to sensor nodes, however, energy consumption constitutes a critical design concern because the change detection scheme is implemented in a sensor node, which is a small battery-powered device. In this paper, we present a comparative study of various distance functions in terms of execution time, energy consumption, and detecting accuracy through simulation of speech signal data. The simulation result demonstrates that the Euclidean distance function has the highest performance while consuming a low amount of power. We believe our work is the first attempt to undertake a comparative study of distance functions in terms of execution time, energy consumption, and accuracy detection.
The purpose of this study is to develop an automatic algorithm to detect the arousal events. The proposed method is based on time-frequency analysis and the support vector machine classifier using single channel electroencephalogram. To extract features, first we computed 6 indices to find out the information of sleep states. Next powers of each of 4 frequency bands were computed using spectrogram of arousal region. And finally we computed variations of power of EEG frequency to detect arousals. The performance has been assessed using polysomnographic recordings of twenty patients with sleep apnea, snoring and excessive daytime sleepiness. We have shown that proposed method was effective for detecting the arousal events.
최근 드론은 다양한 분야에서 활용되고 있고 드론의 기술도 또한 발전하고 있다. 이에 따라 드론에 대한 위험이 증가하고 있으며, 이로 인한 위협을 줄이기 위하여 드론을 탐지하는 기술이 중요해지고 있다. 하지만 드론은 크기가 작고 반사도가 낮은 재질로 되어 있어 탐지가 어렵다. 본 논문에서는 소형/경량화한 펄스 도플러 레이다에 탑재되는 신호처리 구조를 설계하였다. 대용량 데이터를 실시간으로 처리하기 위하여 채널 별 병렬처리를 수행하고 각 단계에서 연산시간 단축을 위한 알고리즘을 적용하였다. 위상배열안테나와 통합하여 야외시험을 통해 드론 탐지 성능을 확인하였으며, 이로 인하여 본 구조 설계가 실시간으로 동작함을 알 수 있었다.
The signal pattern recognition method by acoustic emission signal is applied to detect and classify the defects of a journal bearing in a power plant. AE signals of main defects such as overheating, wear and corrosion are obtained from a small scale model. To detect and classify the defects, AE signal pattern recognition program is developed. As the classification methods, the wavelet transformation analysis, the frequency domain analysis and time domain analysis are used. Among three analyses, the wavelet transformation analysis is most effective to detect and classify the defects of the journal bearing..
본 연구는 연속된 컬러 영상으로부터 전방의 차량과 차선을 검출하는 과정에서 연속 영상 분석을 통하여 다중 차량을 검출하는 방법을 제안한다. 하나의 프레임에서 차량 후보 영역의 검출은 그림자 특징과 에지 성분을 이용한다. 그리고, 다중 차량 영역을 검출하는 방법은 연속된 영상에 존재하는 차량 후보 영역들의 차량 추정값과(EOV)과 누적 유사도 함수(ASF)를 분석하여 차량일 가능성을 검사한다. 대부분의 연구 방법이 전방의 한 차량을 검출하는데 비해 본 연구에서는 여러 차량을 검출하는 방법을 제시하였으며, 교통량이 많고, 차선 변경이 자주 있는 경우에도 차량의 검출이 가능하도록 한다. 제안된 방식의 효과를 검증하기 위해 노트북 PC와 PC용 CCD 카메라로 도로에서의 영상을 촬영하고 차량 검출 알고리즘을 적용한 처리 시간, 정확도 및 차량검지 결과를 보인다.
There have been numerous studies that extract the R-peak from electrocardiogram (ECG) signals. All of these studies can extract R-peak from ECG. However, these methods are complicated and difficult to implement in a real-time portable ECG device. After filtration choosing a threshold value for R-peak detection is a big challenge. Fixed threshold scheme is sometimes unable to detect low R-peak value and adaptive threshold sometime detect wrong R-peak for more adaptation. In this paper, a simple and robustness algorithm is proposed to detect R-peak with less complexity. This method also solves the problem of threshold value selection. Using the adaptive filter, the baseline drift can be removed from ECG signal. After filtration, an appropriate threshold value is automatically chosen by using the minimum and maximum value of an ECG signals. Then the neighborhood searching scheme is applied under threshold value to detect R-peak from ECG signals. Proposed method improves the detection and accuracy rate of R-peak detection. After R-peak detection, we calculate heart rate to know the heart condition.
In this paper, we present a real-time system to detect abnormal events on gas pipes, based on the signals which are observed through the audio sensors attached on them. First, features are extracted from these signals so that they are robust to noise and invariant to the distance between a sensor and a spot at which an abnormal event like an attack on the gas pipes occurs. Then, a classifier is constructed to detect abnormal events using neural networks. It is a combination of two neural network models, a Gaussian mixture model and a multi-layer perceptron, for the reduction of miss and false alarms. The former works for miss alarm prevention and the latter for false alarm prevention. The experimental result with real data from the actual gas system shows that the proposed system is effective in detecting the dangerous events in real-time with an accuracy of 92.9%.
Background: Foodborne disease outbreaks from various food sources are a major health concern worldwide. Current methods for detection of foodborne pathogens are both expensive and time-consuming. Purpose: This review aims to present the current information available on the use of lateral flow test strips to detect pathogens in food products to enhance food safety. Results: Frequent foodborne disease outbreaks from various food sources have increased the need for rapid and easy methods for routine analysis of foodborne pathogens. Present detection methods for foodborne pathogens require expensive instruments, experts, and long time for sample analysis. Lateral flow test strips have drawn attention in recent years because of their ability to detect analytes quickly and easily. This review focuses on the principle of the lateral flow test, the various formats of lateral flow test strips, recognition elements, labeling tags, and reading instruments. In addition, this review also discusses the future prospects for the lateral flow test strips.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.2148-2161
/
2019
In this paper, we present a real-time cattle action recognition algorithm to detect the estrus phase of cattle from a live video stream. In order to classify cattle movement, specifically, to detect the mounting action, the most observable sign of the estrus phase, a simple yet effective feature description exploiting motion history images (MHI) is designed. By learning the proposed features using the support vector machine framework, various representative cattle actions, such as mounting, walking, tail wagging, and foot stamping, can be recognized robustly in complex scenes. Thanks to low complexity of the proposed action recognition algorithm, multiple cattle in three enclosures can be monitored simultaneously using a single fisheye camera. Through extensive experiments with real video streams, we confirmed that the proposed algorithm outperforms a conventional human action recognition algorithm by 18% in terms of recognition accuracy even with much smaller dimensional feature description.
In many cases, the quality of a product is determined by several correlated quality variables. Control charts have been used for a long time widely to control the production process and to quickly detect the assignable causes that may produce any deterioration in the quality of a product. Numerical switching performances of multivariate cumulative sum control chart for simultaneous monitoring all components in the dispersion matrix ${\Sigma}$ under multivariate normal process $N_p({\underline{\mu}},{\Sigma})$ are considered. Numerical performances were evaluated for various shifts of the values of variances and/or correlation coefficients in ${\Sigma}$. Our computational results show that if one wants to quick detect the small shifts in a process, CUSUM control chart with small reference value k is more efficient than large k in terms of average run length (ARL), average time to signal (ATS), average number of switches (ANSW).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.