DOI QR코드

DOI QR Code

A Review on Lateral Flow Test Strip for Food Safety

  • Received : 2015.06.04
  • Accepted : 2015.07.07
  • Published : 2015.09.01

Abstract

Background: Foodborne disease outbreaks from various food sources are a major health concern worldwide. Current methods for detection of foodborne pathogens are both expensive and time-consuming. Purpose: This review aims to present the current information available on the use of lateral flow test strips to detect pathogens in food products to enhance food safety. Results: Frequent foodborne disease outbreaks from various food sources have increased the need for rapid and easy methods for routine analysis of foodborne pathogens. Present detection methods for foodborne pathogens require expensive instruments, experts, and long time for sample analysis. Lateral flow test strips have drawn attention in recent years because of their ability to detect analytes quickly and easily. This review focuses on the principle of the lateral flow test, the various formats of lateral flow test strips, recognition elements, labeling tags, and reading instruments. In addition, this review also discusses the future prospects for the lateral flow test strips.

Keywords

References

  1. Anfossi, L., N. F. Di, C. Giovannoli, C. Passini and C. Baggiani. 2013. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement. Anal Bioanal Chem. 405(30):9859-67. https://doi.org/10.1007/s00216-013-7428-6
  2. Berlina, A. N., N. A. Taranova, A. V. Zherdev, Y. Y. Vengerov and B. B. Dzantiev. 2013. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Anal Bioanal Chem 405:4997-5000. https://doi.org/10.1007/s00216-013-6876-3
  3. Blazkova, M., M. Koets, J. H. Wichers, A. Van Amerongen, L. Fukal and P. Rauch. 2009. Nucleic acid lateral flow immunoassay for the detection of pathogenic bacteria from food. Czech J. Food Sci. 27:S350-S353.
  4. Bruno, J. G. 2014. Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens 3:341-355. https://doi.org/10.3390/pathogens3020341
  5. Centers for Disease Control and Prevention (CDC), Department of Health and Human Services. 15. http://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html. Accessed 04 June 2015.
  6. Chen, A. and S. Yang. 2015. Replacing antibodies with aptamers in lateral flow immunoassay. Biosensors and Bioelectronics 71:230-242. https://doi.org/10.1016/j.bios.2015.04.041
  7. Ching, K. H., X. He, L. H. Stanker, A. V. Lin, J. A. McGarvey and R. Hnasko. 2015. Detection of Shiga toxins by lateral flow assay. Toxins 7:1163-1173. https://doi.org/10.3390/toxins7041163
  8. Chua, A., C. Y. Yean, M. Ravichandran, B. Lim and P. Lalitha. 2011. A rapid DNA biosensor for the molecular diagnosis of infectious disease. Biosensors and Bioelectronics 26(9):3825-3831. https://doi.org/10.1016/j.bios.2011.02.040
  9. Dong, Y., Y. Xu, W. Yong, X. Chu and D. Wang. 2014. Aptamer and its potential applications for food safety. Crit. Rev. Food. Sci. Nutr. 54(12):1548-1561. https://doi.org/10.1080/10408398.2011.642905
  10. Feng, S., R. Caire, B. Cortazar, M. Turan, A. Wong and A. Ozcan. 2014. Immunochromatographic diagnostic test analysis using Google Glass. ACS Nano 8(3): 3069-3079. https://doi.org/10.1021/nn500614k
  11. Ge, X., A. M. Asiri, D. Du, W. Wen, S. Wang and Y. Lin. 2012. Nanomaterial-enhanced paper-based biosensors. TrAC Trends in Analytical Chemistry 58:31-39.
  12. Hagstrom, A. E. V., G. Garvey, A. S. Paterson, S. Dhamane, M. Adhikari, M. K. Estes, U. Strych, K. Kourentzi, R. L. Atmar and R. C. Willson. 2015. Sensitive detection of norovirus using phage nanoparticle reporters in lateral-flow assay. PLoS ONE 10(5):e0126571. https://doi.org/10.1371/journal.pone.0126571
  13. Hart, R. W., M. G. Mauk, C. Liu, X. Qiu, J. A. Thompson, D. Chen, D. Malamud, W. R. Abrams and H. H. Bau. 2011. Point-of-care oral-based diagnostics. Oral Diseases 17:745-752. https://doi.org/10.1111/j.1601-0825.2011.01808.x
  14. Hossain, S. M. Z., C. Ozimok, C. Sicard, S. D. Aguirre, M. M. Ali, Y. Li and J. D. Brennan. 2012. Multiplexed paper test strip for quantitative bacterial detection. Anal. Bioanal. Chem. 403:1567-1576. https://doi.org/10.1007/s00216-012-5975-x
  15. Hu, J., L. Wang, F. Li, Y. L. Han, M. Lin, T. J. Lu and F. Xu. 2013. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip 13:4352-4357. https://doi.org/10.1039/c3lc50672j
  16. Huang, S. H. 2006. Gold nanoparticle-based immunochromatographic test for identification of Staphylococcus aureus from clinical specimens. Clin Chim Acta. 373(1-2):139-43. https://doi.org/10.1016/j.cca.2006.05.026
  17. Kim, G., G. Yang, S. B. Park, Y. H. Kim, K. J. Lee, J. Y. Son, H. J. Kim and S. R. Lee. 2011. Rapid Detection Kit for Salmonella typhimurium. J. of Biosystems Eng. 36(2): 140-146. https://doi.org/10.5307/JBE.2011.36.2.140
  18. Kim, G., J. H. Moon, S. B. Park, Y. J. Jang, J. Lim and C. Mo. 2013. Image analysis of a lateral flow strip sensor for the detection of Escherichia coli O157:H7. J. of Biosystems Eng. 38(4):335-340. https://doi.org/10.5307/JBE.2013.38.4.335
  19. Kolosova, A. Y., S. D. Saeger, L. Sibanda, R. Verheijen and C. V. Peteghem. 2007. Development of a colloidal goldbased lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol Anal Bioanal Chem 389:2103-2107. https://doi.org/10.1007/s00216-007-1642-z
  20. Korea Food & Drug Administration (KFDA). http://www.mfds.go.kr/e-stat/index.do?nMenuCode=16. Accessed 4 June 2015.
  21. Lee, S., G. Kim and J. Moon. 2013. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system. Sensors 13:5109-5116. https://doi.org/10.3390/s130405109
  22. Liu, C. 2011. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal. Chem. 83:6778-6784. https://doi.org/10.1021/ac201462d
  23. Luo, Z., H. Zhou, H. Jiang, H. Ou, X. Li and L. Zhang. 2015. Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection. Analyst 140(8):2664-2670. https://doi.org/10.1039/C5AN00183H
  24. Meyer, M., T. Scheper and J. G. Walter. 2013. Aptamers: versatile probes for flow cytometry. Applied Microbiology and Biotechnology 97:7097-109. https://doi.org/10.1007/s00253-013-5070-z
  25. Moon, J. H., G. Kim, S. B. Park, J. Lim and C. Mo. 2014. The Importance of FACS analysis in the development of aptamers specific to pathogens. J. of Biosystems Eng. 39(2):111-114. https://doi.org/10.5307/JBE.2014.39.2.111
  26. Moon, J., G. Kim and S. Lee. 2012. A gold nanoparticle and Aflatoxin B1-BSA conjugates based lateral flow assay method for the analysis of Aflatoxin B1. Materials 5:634-643. https://doi.org/10.3390/ma5040634
  27. Mudanyali, O., S. Dimitrov, U. Sikora, S. Padmanabhan, I. Navruza and A. Ozcan. 2012. Integrated Rapid Diagnostic-Test Reader Platform on a Cellphone. Lab Chip. 12(15):2678-2686. https://doi.org/10.1039/c2lc40235a
  28. Noguera, P. S., G. A. Posthuma-Trumpie, M. van Tuil, F. J. van der Wal, A. de Boer, A. P. H. A. Moers and A. van Amerongen. 2011. Carbon nanoparticles as detection labels in antibody microarrays. Detection of genes encoding virulence factors in Shiga toxin-producing Escherichia coli. Anal. Chem. 83(22):8531-8536. https://doi.org/10.1021/ac201823v
  29. O'Farrell, B. 2013. Lateral Flow Immunoassay Systems. In: Immunoassay Handbood, eds. D. Wild, pp. 89-107. Amsterdam: Elsevier Ltd.
  30. Park, S. J. and Y. K. Kim. 2011. Enzyme-linked immunosorbent assay strip sensor for rapid detection of Staphylococcus aureus. Appl. Chem. Eng. 22(5):522-525.
  31. Park, T. S., W. Li, K. E. McCracken and J. Y. Yoon. 2013. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip 13:4832-4840. https://doi.org/10.1039/c3lc50976a
  32. Posthuma-Trumpie, G. A., J. H. Wichers, M. Koets, L. B. J. M. Berendsen and A. Amerongen. 2012. Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays. Anal. Bioanal. Chem. 402:593-600. https://doi.org/10.1007/s00216-011-5340-5
  33. Posthuma-Trumpie, G. A., J. Korf and A. Amerongen. 2009. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal. Chem. 393:569-582. https://doi.org/10.1007/s00216-008-2287-2
  34. Sajid, M., A. Kawde and M. Daud. 2014. Designs, formats and applications of lateral flow assay: A literature review. Journal of Saudi Chemical Society, In press.
  35. Shim, W. B., M. J. Kim, H. Mun and M. G. Kim. 2014. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosensors and Bioelectronics 62:288-294. https://doi.org/10.1016/j.bios.2014.06.059
  36. Singh, J. S. Sharma, S. Nara. 2015. Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem. 170:470-483. https://doi.org/10.1016/j.foodchem.2014.08.092
  37. Song, S., N. Liu, Z. Zhao, E. N. Ediage, S. Wu, C. Sun, S. D. Saeger and A. Wu. 2014. Multiplex lateral flow immunoassay for mycotoxin determination. Anal. Chem. 86 (10):4995-5001. https://doi.org/10.1021/ac500540z
  38. Stoltenburg, R., C. Reinemann and B. Strehlitz. 2007. SELEX-A (r)evolutionary method to generate highaffinity nucleic acid ligands. Biomolecular Engineering 24:381-403. https://doi.org/10.1016/j.bioeng.2007.06.001
  39. Taranova, N. A., A. N. Berlina, A. V. Zherdev and B. B. Dzantiev. 2015. 'Traffic light' immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosensors and Bioelectronics 63:255-261. https://doi.org/10.1016/j.bios.2014.07.049
  40. Wang, D. B., B. Tian, Z. P. Zhang, J. Y. Deng, Z. Q. Cui, R. F. Yang, X. Y. Wang, H. P. Wei and X. E. Zhang. 2013. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system. Biosens Bioelectron. 42:661-667. https://doi.org/10.1016/j.bios.2012.10.088
  41. Wang, L., J. Cai, Y. Wang, Q. Fang, S. Wang, Q. Cheng, D. Du, Y. Lin and F. Liu. 2014. A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta 181:1565-1572. https://doi.org/10.1007/s00604-014-1247-0
  42. Wiriyachaiporn, S., P. H. Howarth, K. D. Bruce and L. A. Dailey. 2013. Evaluation of a rapid lateral flow immunoassay for Staphylococcus aureus detection in respiratory samples. Diagnostic Microbiology and Infectious Disease 75:28-36. https://doi.org/10.1016/j.diagmicrobio.2012.09.011
  43. World Health Organization (WHO). http://www.who.int/mediacentre/factsheets/fs399/en/ Accessed 4 June 2015.
  44. Zhao, X., C. W. Lin, J. Wang and D. H. Oh. 2014. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 24(3):297-312. https://doi.org/10.4014/jmb.1310.10013
  45. Zou, Z., D. Du, J. Wang, J. N. Smith, C. Timchalk, Y. Li and Y. Lin. 2010. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring Trichloropyridinol, a biomarker of exposure to Chlorpyrifos. Anal. Chem. 82(12):5125-5133. https://doi.org/10.1021/ac100260m

Cited by

  1. Enhanced sensitivity of lateral-flow test strip immunoassays using colloidal palladium nanoparticles and horseradish peroxidase vol.86, 2017, https://doi.org/10.1016/j.lwt.2017.08.027
  2. Simultaneous detection of dual biomarkers from humans exposed to organophosphorus pesticides by combination of immunochromatographic test strip and ellman assay vol.104, 2018, https://doi.org/10.1016/j.bios.2017.12.029
  3. Synthesis and characterization of various 5′-dye-labeled ribonucleosides vol.16, pp.35, 2018, https://doi.org/10.1039/C8OB01606B