• Title/Summary/Keyword: Time-temperature Curve

Search Result 391, Processing Time 0.027 seconds

Study of the Hopkinson Effect in the HDDR-treated Nd-Fe-B-type Material

  • Kwon, H.W;Shon, S.W
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.61-65
    • /
    • 2001
  • The Hopkinson effect in the HDDR-treated $Nd_{15}Fe_{77}B_8$ allay was examined in detail by means of a thermo-magnetic analysis with low magnetic field (600 Oe). The emergence and magnitude of maximum in magnetisation in the thermomagnetic curve due to the Hopkinson effect was correlated with the grain structure and coercivity of the HDDR-treated material. The HDDR-treated materials showed a clear Hopkinson effect (maximum in magnetisation just below the Curie temperature of the $Nd_2Fe_{14}B\;$ phase) on heating. The magnitude of the magnetisation rise due to the Hopkinson effect became smaller as the recombination time increased. The magnetisation recovery at room temperature on cooling from above the Curie temperature became smaller as the recombination time increased. The HDDR-treated materials with shorter recombination time, finer grain size and higher coercivity showed larger magnetisation maximum due to the Hopkinson effect in the thermo-magnetic curve.

  • PDF

Time-Temperature Curve of road tunnel for fire (도로터널 내 화재에 따른 시간-온도 가열곡선 도출)

  • Choi, Min-Jung;Jang, Chang-Il;Lee, Sang-Woo;Kim, Joon-Mo;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.713-716
    • /
    • 2008
  • This study is performed to propose a standard to evaluate fire protection assessment for concrete structures during a fire on road tunnel. Recently, a number of road tunnels have been rapidly increased and fire risk also multiplyed according to extend tunnel length, due to natural features and environmentally-friendly road construction in domestic. But we have not yet been prescribed appropriate time-temperature curve for tunnel fire. Therefore we presented fire design model and investigated time-temperature curve proposed by a foreign country considering traffic, a kinds of vehicles which are a basis of heat rate.

  • PDF

Recrystallization Behavior of 304 Stainless Steel during Hot Multistage Deformation (304 스테인레스강의 고온다단변형시 재결정 거동)

  • 조상현;김성일;유연철;노광섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.77-80
    • /
    • 1997
  • The torsion tests in the range of 900~110$0^{\circ}C$, 5.0$\times$10-2~5.0$\times$100/sec were performed to study the recry stallization behavior of 304 stainless steel in the high temperature multistage deformation. The no-recrystallization temperature(Tnr) and fractional softening(FS) were determined by the change of flow curves. The inflection points of stress slope were moved to lower temperature area as the strain rate and the interrupt time were increased. From the multipass flow curve, the intersection between pass stress and FS curve was corresponding to the pass which the FS dropped abruptly and it was shown that the recrystallization area could be determined by the FS measurement in multipass deformation.

  • PDF

Development of Classification System for Material Temperature Responses Using Neuro-Fuzzy Inference (뉴로퍼지추론을 이용한 재질온도응답 분류시스템의 개발)

  • Ryoo, Young-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.440-447
    • /
    • 2000
  • This paper describes a practical system to classify material temperature responses by composition of curve fitting and neuro-fuzzy inference. There are problems with a classification system which utilizes temperature responses. It requires too much time to approach the steady state of temperature response and it has to be filtered to remove the noise which occurs in experiments. Thus, this paper proposes a practical method using curve fitting only for transient state to remove the above problems of time and noise. Using the neuro-fuzzy system, the thermal conductivity of the material can be inferred on various ambient temperatures. So the material can be classified via its inferred thermal conductivity. To realize the system, we designed a contact sensor which has a similar structure with human finger, implemented a hardware system, and developed a classification software of curve fitting and neuro-fuzzy algorithm.

  • PDF

Evaluation of Impaired Waterbody and Multivariate Analysis Using Time Series Load Curve -in Jiseok Stream Watershed- (시계열 부하 곡선을 이용한 수체손상 평가 및 다변량 분석 -지석천 유역을 대상으로-)

  • Park, Jinhwan;Kang, Taewoo;Han, Sungwook;Baek, Seunggwon;Kang, Taegu;Yoo, Jechul;Kim, Youngsuk
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.650-660
    • /
    • 2017
  • In this study, pollutant emission characteristics by water damage period analyzed 11 items (water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and flow) with load duration curve, time series load curve and factor analysis for three years (2014-2016). Load duration curve is applied to judge the level of impaired waterbody and estimate impaired level by pollutants such as BOD and T-P in this study depending on variation of stream flow. Water quality standard exceeded the flow of mid-range and low-range by flow condition evaluation using load duration curve. This watershed was influenced by point source more than non-point source. Cumulative excess rate of BOD and T-P kept water quality standard for all seasons (spring, summer, autumn and winter) except BOD 59% in spring. Water quality changes were influenced by pollutants of basic environmental treatment facilities and agricultural areas during spring and summer. Results of factor analysis were classified commonly first factor (BOD, COD, and TOC) and second factor (flow, water temperature and SS). Therefore, effects of artificial pollutants and maintenance water must be controlled seasonally and reduced relative to water damage caused by point pollution sources with effluent standard strengthened in the target watershed.

A Study on Accuracy Improvement for Estimation of Vehicle Information Using BWIM Methodology (BWIM방법을 이용한 차량 정보 추정시 정밀도 향상 방안에 관한 연구)

  • Hwang, Hyo-Sang;Kyung, Kab-Soo;Lee, Hee-Hyun;Jeon, Jun-Chang
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.63-73
    • /
    • 2013
  • Dynamic strain history curve measured in the field is influenced by various factors such as vehicle type, speed, noise, temperature and running location etc.. Because such curve is used for vehicle weight estimation methodology suggested by Moses, exact strain history curve is the most important thing for exact estimation of vehicle weight. In this paper, effect of such factors mentioned above is investigated on the measured strain history curves, and results of weight estimation of vehicles are discussed quantitatively. From this study, it was known that temperature effect contained in the strain history curve measured for long time in-site gives the biggest effect on result of weight estimation and it can be removed by using the mode value. Furthermore, gross vehicle weight can be estimated within 5% error corresponding to A class of the European classification if effects of temperature and noise are removed and vehicle properties such as speed, axle arrangement and running location are considered properly.

Production of Retort Food using Soybean Curd Residue (비지를 이용한 Retort Food의 제조)

  • Chun, Kie-Hwan;Kim, Byung-Yong;Hahm, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1327-1332
    • /
    • 1998
  • The optimum thermal condition of retort Biji product was determined by heat penetration curve, aerobic bacteria count and sensory test. Retort Biji showed a simple logarithmic heating curve regardless of solid content. Heating time was a $26{\sim}27$ min until Fo value reached 9 min and the amount of microorganism in the Biji product sterilized for 26 min at $121^{\circ}C$ were decreased to $10^{-4}\;CFU/g$, indicating the safe range for retort product. The rate of heat penetration was reduced as solid content and size of product were increased, whereas sterilization temperature and initial temperature of product influenced the heat penetration curve. Sensory scare indicated that there was no significant difference in color, flavor, and appearance among different thermal processes. However, Biji product sterilized at $121^{\circ}C$ showed the highest score in overall preference value.

  • PDF

A Study on Die Wear Model considering Thermal Softening(I) -Construction of Wear Model (열연화를 고려한 금형마멸모델에 관한 연구(I)-마멸모델의 정립)

  • Kang, Jong-Hun;Park, In-Woo;Jae, Jin-Soo;Kang, Seong-Soo
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.274-281
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In elevated temperature forming processes wear is the predominant factor for tool operating life. To predict tool life by wear Achard's model is generally applied. Usually hardness of die is considered to be a function of temperature. But hardness of die is a function of not only tem-perature but also operating time of die. To consider softening of die by repeated operation it is necessary to express hardness of die by a function of a function of temperature and time. By experiment of reheating of die softening curve was obtained and applied to suggest modified Archard's Model in which hardness is a function of main tempering curve.

  • PDF

A Study on Performance Improvement Method of Fixed-gain Self-alignment on Temperature Stabilizing State of Accelerometers (가속도계 온도안정화 상태에서 고정이득방식 자체정렬의 성능개선 방법에 대한 연구)

  • Lee, Inseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.435-442
    • /
    • 2016
  • For inertial navigation systems, initial information such as position, velocity and attitude is required for navigation. Self-alignment is the process to determine initial attitude on stationary condition using inertial measurements such as accelerations and angular rates. The accuracy of self-alignment is determined by inertial sensor error. As soon as an inertial navigation system is powered on, the temperature of accelerometer rises rapidly until temperature stabilization. It causes acceleration error which is called temperature stabilizing error of accelerometer. Therefore, temperature stabilizing error degrades the alignment accuracy and also increases alignment time. This paper suggests a method to calculate azimuthal attitude using curve fitting of horizontal control angular rate in fixed-gain self-alignment. It is verified by simulation and experiment that the accuracy is improved and the alignment time is reduced using the proposed method under existence of the temperature stabilizing error.

Standard Proposed for Fire Safety Evaluation of Railway Tunnels and Evaluation of Fire Temperature (철도터널내 화재시 내화성능 평가를 위한 기준 제안 및 화재 온도 평가)

  • Won, Jong-Pil;Choi, Min-Jung;Lee, Su-Jin;Lee, Sang-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.196-200
    • /
    • 2010
  • The number of railway tunnels has been increasing rapidly. Although fires in long railway tunnels are rare, the consequences can be devastating. Prior to this study, there were no adequate time-temperature curves for the fire safety assessment of Korean railway tunnels. We studied a standard foreign time-temperature curve for which the heat rate is based on the traffic and the types of vehicles. We then proposed a hydrocarbon curve as a fire design model for railway tunnels in Korea. We examined the implications of this proposed model on railway tunnel structures using numerical analysis.