• 제목/요약/키워드: Time-slip

검색결과 419건 처리시간 0.03초

노인가구 특성에 따른 주거개조요구에 관한 연구 (A Study on the Elderly Households' Needs for Housing Modification)

  • 이광수;박수빈
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2009년 춘계학술발표대회 논문집
    • /
    • pp.278-283
    • /
    • 2009
  • This study aims to figure out the old people's needs for modification of their housing to maintain an independent lifestyle despite their health status and living arrangements. The total of 438 residents take part in the questionnaire survey research through the quota sampling method grouped by age (60-64 group, 65-69 group, 70-74 group, and over 75 group), sex (male and female), and house type (apartment houses and others). The results are as follows. (1) The old people's most inspired modification needs in interior spaces are remodeling the heating controls in the living room and the bedroom, ventilation facilities and storage spaces in the kitchen, non-slip tile flooring and ventilation facilities in bathroom, an easy door-lock, non-slip tile flooring, a draft cut-off, and storage spaces in the entrance. Besides they require emergency alarm, easy door and window locks, fire and gas alarm, and furniture with easy handling. It is necessary to supply the aged with the appropriate heating controls for their sensitivity to heat, with enough storage spaces for the increased possessions, and with diverse safety systems reflected blunting of mobility and sensibility. (2) As they grow older, the aged require more remote controls and safety facilities such as emergency alarm, easy locks and furniture with distinguishable colors. Male elderly is more concerned with safety, while female elderly do with convenience due to their different time spending in the house. The elderly residents in the apartment houses require the heating controls, a draft cut-off, and storage space less than other types of houses. Thus modification of the heating controls, a draft cut-off, and storage space are regards as basic needs for the elderly residents in non-apartment houses.

  • PDF

단층 운동시 댐 파괴 거동 해석 (Crack Propagation in Earth Embankment Subjected to Fault Movement)

  • 손익준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1988년도 학술세미나 강연집
    • /
    • pp.3-67
    • /
    • 1988
  • Model studies on the response of homgeneous earth embankment dams subjected to strike-slip fault movement have been penomed via centrifuge and finite element analysis. The centrifuge model tests have shown that crack development in earth embankment experiences two major patters: shear failure deep inside the embankment and tension failure near the surface. The shear rupture zone develops from the base level and propagates upward continuously in the transverse direction but allows no open leakage chnnel. The open tensile cracks develop near the surface of the embankment, but they disappear deep in the embankment. The functional relationship has been developed based on the results of the centrifuge model tests incorporating tile variables of amount of fault movement, embankment geometry, and crack propagation extent in earth des. This set of information can be used as a guide line to evaluate a "transient" safety of the duaged embankment subjected to strike-slip fault movement. The finite element analysis has supplemented the additional expluations on crack development behavior identified from the results of the centrifuge model tests. The bounding surface time-independent plasticity soil model was employed in the numerical analysis. Due to the assumption of continuum in the current version of the 3-D FEM code, the prediction of the soil structure response beyond the failure condition was not quantitatively accurate. However, the fundamental mechanism of crack development was qualitatively evaluated based on the stress analysis for the deformed soil elements of the damaged earth embankment. The tensile failure zone is identified when the minor principal stress of the deformed soil elements less than zero. The shear failure zone is identified when the stress state of the deformed soil elements is at the point where the critical state line intersects the bounding surface.g surface.

  • PDF

슬립모델을 이용한 변형률의존 유한변형 탄소성재료의 구성방정식 개발 (A Rate-Dependent Elastic Plastic Constitutive Equation in Finite Deformation Based on a Slip Model)

  • 남용윤;김사수;이상갑
    • 대한조선학회논문집
    • /
    • 제34권1호
    • /
    • pp.77-86
    • /
    • 1997
  • 최근들어 안전하고 합리적인 구조를 설계하기 위하여 구조물의 내충돌 또는 내충격에 대한 요구와 관심이 높아지고 있는데, 이러한 문제들은 아주 짧은 시간동안에 대변형이 일어나는 비선형문제라는 특징이 있다. 구조재료는 변형속도가 빨라짐에 따라 정적인 범주에서 보이는 거동과는 달리 변형률 의존적인 거동을 보인다. 따라서 대변형 소성문제인 충돌해석 등에는 종래 사용하여 온 변형률 비의존 재료구성방정식으로는 한계가 있다. 이 논문에서는 이러한 점을 개선하기 위하여 연강의 소성거동을 잘 나타낼 수 있는 소성슬립모델을 채용하고, 비선형경화를 도입하여 변형도 적용범위를 확장한 대변형 탄소성 변형률의존 재료구성방정식을 제시하였다. 본 구성방정식의 특징으로 항복조건과 하중조건이 필요없기 때문에 계산이 간편하며, 전위밀도와 속도로써 소성을 표현하기 때문에 보다 물리적인 의미를 가지고 금속재료의 소성현상을 나타낼 수 있다.

  • PDF

SNCR의 N Ox 제거효율 향상을 위한 Hybrid SNCR/SCR 공정 응용 (Application of Hybrid SNCR/SCR process for Improved N Ox Removals Efficiency of SNCR)

  • 최상기;최성우
    • 한국환경과학회지
    • /
    • 제12권9호
    • /
    • pp.997-1004
    • /
    • 2003
  • The objective of this research was to test whether, under controlled laboratory conditions, hybrid SNCR/SCR process improves N $O_{x}$ removal efficiency in comparison with the SNCR only. The hybrid process is a combination of a redesigned existing SNCR with a new downstream SCR. N $O_{x}$ reduction experiments using a hybrid SNCR/SCR process have been conducted in simple NO/N $H_3$/ $O_2$ gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial N $O_{x}$ concentration was 500 ppm in the presence of 5% or 15% $O_2$. Commercial catalysts, $V_2$ $O_{5}$ -W $O_3$-S $O_4$/Ti $O_2$, were used for SCR N $O_{x}$ reduction. The residence time and space velocity were around 1.67 seconds and 2,400 $h^{-1}$ or 6000 $h^{-1}$ in SNCR and SCR reactors, respectively. N $O_{x}$ reduction of the hybrid system was always higher than could be achieved by SNCR alone at a given value of N $H_{3SLIP}$. Optimization of the hybrid system performance requires maximizing N $O_{x}$ removal in the SNCR process. An analysis based on the hybrid system performance in this lab-scale work indicates that a equipment with N $O_{xi}$ =500 ppm will achieve a total N $O_{x}$ removal of about 90 percent with N $H_{3SLIP}$ $\leq$ 5 ppm only if the SNCR N $O_{x}$ reduction is at least 60 percent. A hybrid SNCR/SCR process has shown about 26∼37% more N $O_{x}$ reduction than a SNCR unit process in which a lower temperature of 85$0^{\circ}C$ turned out to be more effective.be more effective.

Overview of Epithermal Gold-Silver Mineralization, Korea:

  • Park, Seon-Gyu;Ryu, In-Chang;So, Chil-Sup;Wee, Soo-Meen;Kim, Chang-Seong;Park, Sang-Joon;Kim, Sahng-Yup
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.7-14
    • /
    • 2003
  • The precious-meta] mineralization of epithermal type in the Korean Peninsula, which is spread over a broader range of ca. 110 to 60 Ma with a major population between 90 and 70 Ma, mainly occurred along the NE-trending major strike-slip fault systems (i.e., the Gongju and Gwangju ones) that commonly include volcano-tectonic depressions and calderas. The occurrence of epithermal mineralization during Late Cretaceous clearly indicates that the geologic setting of the Korean Peninsula changed to the favorable depth of ore formation with very shallow-crustal environments (〈1.0 kb) accompanied with gold-silver (-base-meta]) mineralization. Epithermal gold-silver deposits in Korea are primarily distinguished as sediment-dominant and volcanic-dominant basins by using criteria of varying alteration, ore and gangue mineralogy deposited by the interaction of different ore-forming fluids with host rocks and meteoric waters. These differences between the central and southern portions are causally linked to the tectonic evolution of the Peninsula during the Cretaceous time. In the Early Cretaceous, the sinistral strike-slip movements due to the oblique subduction of the Izanagi Plate resulted in the Gongju and Gwangju fault systems in the central portion of the Korean Peninsula, which was accompanied with a number of sediment-dominant basins formed along these faults. During the Late Cretaceous, the mode of convergence of the Izanagi Plate changed to northwesteward so that orthogonal convergence occurred with a calc-alkaline volcanism. As results, volcanic-dominant basins were developed in the southern portion of the Peninsula, accompanied with volcano-tectonic depressions and caldera-related fractures. The magmatism and related fractures during Late Cretaceous may play an important role in the formation of geothermal systems. Thus, such fault zones may be favorable environments for veining emplacement that is closely related to the precious-metal mineralization of epithermal type in the Korean Peninsula.

  • PDF

Effect of curing conditions on mode-II debonding between FRP and concrete: A prediction model

  • Jiao, Pengcheng;Soleimani, Sepehr;Xu, Quan;Cai, Lulu;Wang, Yuanhong
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.635-643
    • /
    • 2017
  • The rehabilitation and strengthening of concrete structures using Fiber-Reinforced Polymer (FRP) materials have been widely investigated. As a priority issue, however, the effect of curing conditions on the bonding behavior between FRP and concrete structures is still elusive. This study aims at developing a prediction model to accurately capture the mode-II interfacial debonding between FRP strips and concrete under different curing conditions. Single shear debonding experiments were conducted on FRP-concrete samples with respect to different curing time t and temperatures T. The J-integral formulation and constrained least square minimization are carried out to calibrate the parameters, i.e., the maximum slip $\bar{s}$ and stretch factor n. The prediction model is developed based on the cohesive model and Arrhenius relationship. The experimental data are then analyzed using the proposed model to predict the debonding between FRP and concrete, i.e., the interfacial shear stress-slip relationship. A Finite Element (FE) model is developed to validate the theoretical predictions. Satisfactory agreements are obtained. The prediction model can be used to accurately capture the bonding performance of FRP-concrete structures.

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.

양산단층 동편 화강암질암의 대자율 이방성(AMS) (Anisotropy of Magnetic Susceptibility (AMS) of Granitic Rocks in the Eastern Region of the Yangsan Fault)

  • 조형성;손문;김인수
    • 자원환경지질
    • /
    • 제40권2호
    • /
    • pp.171-189
    • /
    • 2007
  • 경상분지 남동부에 위치한 양산단층 동편의 화강암질암, 화산암류, 퇴적암류를 대상으로 총 77개 지점으로부터 독립적으로 정향된 542개의 코어시료를 채취하여 대자율 이방성(AMS) 연구를 실시하였다. 총 대자율 측정, 고온대자율 실험 및 등온잔류자기 획득실험을 통하여 연구대상 암석들의 주 자성광물이 자철석 위주의 티탄자철석계열의 것임이 밝혀졌다. 연구의 주 대상암체인 화강암질암에는 자기적 엽리구조와 자기적 선구조 모두가 존재하고 있으며, 자기적 엽리구조의 주향은 북동-남서가 지배적이다. 이 자기적 엽리구조는 화강암질암의 변형에 대한 강한 저항의 물성, 주변 모암의 자기적 엽리구조와의 불일치, 고화 이후 취성변형으로 만들어진 소단층이나 절리 등의 지질구조와의 모순점, 현미경에서 관찰되는 조직 등의 증거로부터 마그마가 관입정치하여 완전히 고화되기 전에 응력을 받아 생성된 일차 미세구조(primary fabric)로 판단된다. 이 북동-남서 주향의 자기적 엽리구조는 북서-남동의 압축력으로 만들어질 수 있는데 이러한 응력은 양산단층의 좌수향 주향운동의 산물로 해석된다. 연구지역 화강암질암의 연령이 약 $60\sim70Ma$로 알려져 있음을 감안하면 양산단층은 이 시기(백악기 말에서 신생대 초)에 걸쳐서 좌수향 주향이동 운동을 하였음을 알 수 있다.

Minimum 2-Year Follow-Up Result of Degenerative Spinal Stenosis Treated with Interspinous U ($Coflex^{TM}$)

  • Park, Seong-Cheol;Yoon, Sang-Hoon;Hong, Yong-Pyo;Kim, Ki-Jeong;Chung, Sang-Ki;Kim, Hyun-Jib
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권4호
    • /
    • pp.292-299
    • /
    • 2009
  • Objective : Clinical and radiological results of posterior dynamic stabilization using interspinous U (ISU, $Coflex^{TM}$, Paradigm Spine $Inc.^{(R)}$, NY, USA) were analyzed in comparison with posterior lumbar interbody fusion (PLIF) in degenerative lumbar spinal stenosis (LSS). Methods : A retrospective study was conducted for a consecutive series of 61 patients with degenerative LSS between May 2003 and December 2005. We included only the patients completed minimum 24 months follow up evaluation. Among them, 30 patients were treated with implantation of ISU after decompressive laminectomy (Group ISU) and 31 patients were treated with wide decompressive laminectomy and posterior lumbar interbody fusion (PLIF; Group PLIF). We evaluated visual analogue scale (VAS) and Oswestry Disability Index (ODI) for clinical outcomes (VAS, ODI), disc height ratio disc height (DH), disc height/vertebral body length ${\times}100$), static vertebral slip (VS) and depth of maximal radiolucent gap between ISU and spinous process) in preoperative, immediate postoperative and last follow up. Results : The mean age of group ISU ($66.2{\pm}6.7$ years) was 6.2 years older than the mean age of group PLIF ($60.4{\pm}8.1$ years; p=0.003). In both groups, clinical measures improved significantly than preoperative values (p<0.001). Operation time and blood loss was significantly shorter and lower in group ISU than group PLIF (p<0.001). In group ISU, the DH increased transiently in immediate postoperative period ($15.7{\pm}4.5%{\rightarrow}18.6{\pm}5.9%$), however decreased significantly in last follow up ($13.8{\pm}6.6%$, p=0.027). Vertebral slip (VS) of spondylolisthesis in group ISU increased during postoperative follow-up ($2.3{\pm}3.3{\rightarrow}8.7{\pm}6.2$, p=0.040). Meanwhile, the postoperatively improved DH and VS was maintained in group PLIF in last follow up. Conclusion : According to our result, implantation of ISU after decompressive laminectomy in degenerative LSS is less invasive and provides similar clinical outcome in comparison with the instrumented fusion. However, the device has only transient effect on the postoperative restoration of disc height and reduction of slip in spondylolisthesis. Therefore, in the biomechanical standpoint, it is hard to expect that use of Interspinous U in decompressive laminectomy for degenerative LSS had long term beneficial effect.

모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석 (Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship)

  • 곽효경;김선필
    • 한국전산구조공학회논문집
    • /
    • 제13권2호
    • /
    • pp.245-256
    • /
    • 2000
  • 이 논문에서는 반복하중을 받는 철근콘크리트 보의 거동을 모사하기 위한 모멘트-곡률 관계를 제안하고 있다. 기존의 제안된 모멘트-곡률 관계 모델이나 적층단면법과는 달리 제안된 모델은 부착-슬립관계와 상응하는 평형방정식을 기초로 하여 구성된 단조증가 하중에 대한 모멘트-곡률 관계를 이용하여 부착-슬립에 따른 영향을 고려하고 있다. 또한 대변형 해석시 보다 개선된 결과를 얻기 위해 철근의 응력-변형률 관계에 착안한 곡선화 된 천이곡선을 사용하고 있다. 응력-변형률 관계에 기초하여 단면을 가상의 층상구조로 모사하는 적층단면법과 비교하여 제안된 모델은 단면의 거동을 모멘트-곡률 관계로 표현하는 관계로 대형구조물의 해석시 계산시간과 저장공간을 줄일 수 있는 잇점을 가지고 있다. 나아가 고정단회전과 pinching효과를 고려하기 위한 제안된 기본모델의 수정방안이 소개되고 있다. 마지막으로 제안된 모델식의 타당성을 검증하기 위하여 해석결과와 실험값들의 비교가 이루어졌다. 본 논문은 구조물의 미시적 측면에서 유효평균탄성계수를 결정하기 위한 균질화기법인 점근적 방법을 적용하였고, 탄성값을 조사하기 위하여 유한요소법으로 정식화하였다. 수치 예로서 물성치가 각기 다른 등방성 재료를 적층한 부재의 임의 단면에서 단위요소를 해석영역으로 설정하고 산출된 탄성계수를 기존의 해석방법으로부터 산출된 값과 비교하였다. 균질화기법으로 산출된 탄성계수는 과소평가되어 나타나며, 이는 해석영역을 유한요소정식화하는 과정에서 수정항만큼 차이가 난다는 것을 증명하였다. 기존 해석방법으로는 복합재료의 탄성계수가 단순히 재료의 산술적 평균값으로 계산되는 것과는 달리, 미시적으로 복합재 단위요소의 반복성을 고려함으로써 제안된 해석방법이 보다 유용하다는 것을 보여 주었다.

  • PDF