• Title/Summary/Keyword: Time-series Model

Search Result 2,674, Processing Time 0.03 seconds

Analysis of Groundwater Recharge Characteristics Using Relationship between Rainfall and Groundwater Level (강우량과 지하 수위를 이용한 지하수 함양특성 분석)

  • Lee, Dong-Ryul;Gu, Ho-Bon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • A dynamic model, which combined time series model with distributed-lag model, is applied to understand the relationship between rainfall and groundwater level. In the model, rainfall with distribution lags and past groundwater level as a dependent variables were used to estimate present groundwater level. The distribution of the lagged rainfall effects for groundwater levels was modeled by Almon polynomials. The model was applied to Banglim and Tanbu groundwater stations in Pyungchang river and Bocheong stream watershed which are representative basins for International Hydrological Program (IHP). The dynamic model represents observed groundwater levels very well and can be used to predict the levels. The model parameters reflect hydraulic characteristics of aquifer. In addition, from the parameters it appears that the increase in groundwater level due to rainfall takes place significantly within first two days of the rainfall event. The rainfall of the order of 18mm/day and 30mm/day at Banglim and Tanbu, respectively, had no significant effect on the groundwater levels.

  • PDF

Forecasting Model Design of Fire Occurrences with ARIMA Models (ARIMA모델에 기반한 화재발생 빈도 예측모델의 설계)

  • Ahn, Sanghun;Kang, Hoon;Cho, Jaehoon;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.20-28
    • /
    • 2015
  • A suitable monitoring method is necessary for successful policy implementation and its evaluation, required for effective prevention of abnormal fire occurrences. To do this, there were studies for applying control charts of quality management to fire occurrence monitoring. As a result, it was proved that more fire occurs in winter and its trend moves yearly-basis with some patterns. Although it has trend, if we apply the same criteria for each time, inefficient overreacting fire prevention policy will be accomplished in winter, and deficient policy will be accomplished in summer. Thus, applying different control limits adaptively for each time would enable better forecasting and monitoring of fire occurrences. In this study, we treat fire occurrences as time series model and propose a method for configuring its coefficients with ARIMA model. Based on this, we expect to carry out advanced analysis of fire occurrences and reasonable implementation of prevention activities.

Prediction of Wind Power by Chaos and BP Artificial Neural Networks Approach Based on Genetic Algorithm

  • Huang, Dai-Zheng;Gong, Ren-Xi;Gong, Shu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 2015
  • It is very important to make accurate forecast of wind power because of its indispensable requirement for power system stable operation. The research is to predict wind power by chaos and BP artificial neural networks (CBPANNs) method based on genetic algorithm, and to evaluate feasibility of the method of predicting wind power. A description of the method is performed. Firstly, a calculation of the largest Lyapunov exponent of the time series of wind power and a judgment of whether wind power has chaotic behavior are made. Secondly, phase space of the time series is reconstructed. Finally, the prediction model is constructed based on the best embedding dimension and best delay time to approximate the uncertain function by which the wind power is forecasted. And then an optimization of the weights and thresholds of the model is conducted by genetic algorithm (GA). And a simulation of the method and an evaluation of its effectiveness are performed. The results show that the proposed method has more accuracy than that of BP artificial neural networks (BP-ANNs).

A Dynamic Rain Attenuation Model for Adaptive Satellite Communication Systems (적응형 위성통신 시스템 설계를 위한 동적 강우 감쇠 모델)

  • Zhang, Meixiang;Kim, Soo-Young;Pack, Jeong-Ki
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • Signal fading due to rain is one of the most significant factors degrading link quality in satellite communication systems. Adaptive transmission is considered to be the most efficient means to countermeasure the rain attenuation. In order to develop and design a good adaptive transmission system, we need a dynamic rain attenuation model which can synthesize time series of rain attenuation. In this paper, we present a modeling technique for dynamic rain attenuation using a Markov process. We derive statistical fading properties of the rain attenuation data measured in second time interval and define four states in the Markov process. We synthesize the rain attenuation data using the 4-state Markov process, and compare statistical properties of the simulated data to those of the measured data.

Time Series Change Characteristics of Unconfined Groundwater Wells Temperatures for Agricultural Water Use (농업용수 활용을 위한 비피압지하수관정 수온의 시계열 변동특성)

  • Park, Seung Ki;Jung, Nam Su
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.1
    • /
    • pp.13-23
    • /
    • 2016
  • There is a need to analyze unconfined groundwater behavior since the demand of groundwater use has been increasing. While unconfined groundwater temperature is tend to be affected by air temperature, it is hard to find an empirical study in South Korea. In this research, we try to determine the relationship between daily average air temperature and daily average groundwater temperature by time-sequential analysis of groundwater monitoring wells in Galshin basin in Yesan-Gun, Chungcheongnam-Do. In addition, models to estimate groundwater temperature from air temperature were developed. In this research 101-day moving average method with measured air temperature is used to estimate groundwater temperature. To verify the developed model, estimated values of average groundwater temperature with 101 moving average are compared to the measured data from September 10 2007 to September 9 2008. And, Nash-Stucliff Efficiency and Coefficient of Determination were 0.970 and 0.976, therefore it was concluded that the model allowing groundwater temperature estimation from air temperature is with reasonable applicability.

Traffic Accident Analysis of Link Sections Using Panel Data in the Case of Cheongju Arterial Roads (패널자료를 이용한 가로구간 교통사고분석 - 청주시 간선도로를 사례로 -)

  • Kim, Jun-Young;Na, Hee;Park, Byung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.141-146
    • /
    • 2012
  • This study deals with the accident model using panel data which are composed of time series data of 2005 through 2007 and cross sectional data of link sections in Cheongju. Panel data are repeatedly collected over time from the same sample. The purpose of the study is to develop the traffic accident model using the above panel data. In pursuing the above, this study gives particular attentions to deriving the optimal models among various models including TSCSREG (Time Series Cross Section Regression). The main results are as follows. First, 8 panel data models which explained the various effects of accidents were developed. Second, $R^2$ values of fixed effect models were analyzed to be higher than those of random effect models. Finally, such the variables as the sum of the number of crosswalk on intersections and sum of the number of intersections were analyzed to be positive to the accidents.

Forecasting the Occurrence of Voice Phishing using the ARIMA Model (ARIMA 모형을 이용한 보이스피싱 발생 추이 예측)

  • Jung-Ho Choo;Yong-Hwi Joo;Jung-Ho Eom
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Voice phishing is a cyber crime in which fake financial institutions, the Public Prosecutor's Office, and the National Police Agency are impersonated to find out an individual's Certification number and credit card number or withdraw a deposit. Recently, voice phishing has been carried out in a subtle and secret way. Analyzing the trend of voice phishing that occurred in '18~'21, it was found that there is a seasonality that occurs rapidly at a time when the movement of money is intensifying in the trend of voice phishing, giving ambiguity to time series analysis. In this research, we adjusted seasonality using the X-12 seasonality adjustment methodology for accurate prediction of voice phishing occurrence trends, and predicted the occurrence of voice phishing in 2022 using the ARIMA model.

Developing Traffic Accident Models Using Panel Data (Focused on the 50 intersections in Cheongju) (패널자료를 이용한 교통사고모형 개발 (청주시 교차로 50개 지점을 대상으로))

  • Kim, Jun-Yong;Na, Hui;Park, Min-Gyu;Park, Byeong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.95-101
    • /
    • 2011
  • This study proposes the accident estimation model developed based on the time-series cross-sectional data at 50 intersections in Cheongju. The data were collected repeatedly and accumulated from 2004 to 2007. This study focused on deriving the optimal among the various models including TSCSREG(Time Series Cross Section Regression). Four different models utilizing various elements affecting accidents were developed. Through a statistical test, it was found that the t values of independent variables of the fixed effect models were less than those of the random effect models. Two variables were then found to be positive to the accidents: the number of crosswalks at an intersection and the number of intersections.

Study on the Feasibility of Applying Forecasted Weather Data for Operations of a Thermal Storage System (축열운전을 위한 기상예보치의 이용가능성에 대한 검토)

  • Jung Jae-Hoon;Shin Young-Gy;Park Byung-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.87-94
    • /
    • 2006
  • In this paper, we investigated a feasibility of applying highest and lowest temperatures of the next day forecasted from a meteorological observatory to operation of an air-conditioning system with thermal storage. First we investigated specific characteristics of the time series of forecasted temperatures and errors in Osaka from 1994 to 1996. Since the forecast error is not always small, it might be difficult to use the forecasted data without correction for the sizing and the control of the thermal storage system. On the other hand, the autocorrelation functions of the forecast errors decrease relatively slowly during high summer season when cooling thermal storage is required. Since the values of the autocorrelation function; for one day are larger than 0.4, not small, the forecast errors can be predicted by proper statistical analysis. Thus, the forecasted values of the highest temperatures for the next day were improved by using the stochastic time series models.

A study on solar energy forecasting based on time series models (시계열 모형과 기상변수를 활용한 태양광 발전량 예측 연구)

  • Lee, Keunho;Son, Heung-gu;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.139-153
    • /
    • 2018
  • This paper investigates solar power forecasting based on several time series models. First, we consider weather variables that influence forecasting procedures as well as compare forecasting accuracies between time series models such as ARIMAX, Holt-Winters and Artificial Neural Network (ANN) models. The results show that ten models forecasting 24hour data have better performance than single models for 24 hours.