• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.035 seconds

Robustness of Bayes forecast to Non-normality

  • Bansal, Ashok K.
    • Journal of the Korean Statistical Society
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 1978
  • Bayesian procedures are in vogue to revise the parameter estimates of the forecasting model in the light of actual time series data. In this paper, we study the Bayes forecast for demand and the risk when (a) 'noise' and (b) mean demand rate in a constant process model have moderately non-normal probability distributions.

  • PDF

$PM_{10}$ Exposure and Non-accidental Mortality in Asian Populations: A Meta-analysis of Time-series and Case-crossover Studies

  • Park, Hye Yin;Bae, Sanghyuk;Hong, Yun-Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.1
    • /
    • pp.10-18
    • /
    • 2013
  • Objectives: We investigated the association between particulate matter less than $10{\mu}m$ in aerodynamic diameter ($PM_{10}$) exposure and non-accidental mortality in Asian populations by meta-analysis, using both time-series and case-crossover analysis. Methods: Among the 819 published studies searched from PubMed and EMBASE using key words related to $PM_{10}$ exposure and non-accidental mortality in Asian countries, 8 time-series and 4 case-crossover studies were selected for meta-analysis after exclusion by selection criteria. We obtained the relative risk (RR) and 95% confidence intervals (CI) of non-accidental mortality per $10{\mu}g/m^3$ increase of daily $PM_{10}$ from each study. We used Q statistics to test the heterogeneity of the results among the different studies and evaluated for publication bias using Begg funnel plot and Egger test. Results: Testing for heterogeneity showed significance (p<0.001); thus, we applied a random-effects model. RR (95% CI) per $10{\mu}g/m^3$ increase of daily $PM_{10}$ for both the time-series and case-crossover studies combined, time-series studies relative risk only, and case-crossover studies only, were 1.0047 (1.0033 to 1.0062), 1.0057 (1.0029 to 1.0086), and 1.0027 (1.0010 to 1.0043), respectively. The non-significant Egger test suggested that this analysis was not likely to have a publication bias. Conclusions: We found a significant positive association between $PM_{10}$ exposure and non-accidental mortality among Asian populations. Continued investigations are encouraged to contribute to the health impact assessment and public health management of air pollution in Asian countries.

Fuzzy Support Vector Machine for Pattern Classification of Time Series Data of KOSPI200 Index (시계열 자료 코스피200의 패턴분류를 위한 퍼지 서포트 벡타 기계)

  • Lee, S.Y.;Sohn, S.Y.;Kim, C.E.;Lee, Y.B.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.52-56
    • /
    • 2004
  • The Information of classification and estimate about KOSPI200 index`s up and down in the stock market becomes an important standard of decision-making in designing portofolio in futures and option market. Because the coming trend of time series patterns, an economic indicator, is very subordinate to the most recent economic pattern, it is necessary to study the recent patterns most preferentially. This paper compares classification and estimated performance of SVM(Support Vector Machine) and Fuzzy SVM model that are getting into the spotlight in time series analyses, neural net models and various fields. Specially, it proves that Fuzzy SVM is superior by presenting the most suitable dimension to fuzzy membership function that has time series attribute in accordance with learning Data Base.

Flow rate prediction at Paldang Bridge using deep learning models (딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측)

  • Seong, Yeongjeong;Park, Kidoo;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.565-575
    • /
    • 2022
  • Recently, in the field of water resource engineering, interest in predicting time series water levels and flow rates using deep learning technology that has rapidly developed along with the Fourth Industrial Revolution is increasing. In addition, although water-level and flow-rate prediction have been performed using the Long Short-Term Memory (LSTM) model and Gated Recurrent Unit (GRU) model that can predict time-series data, the accuracy of flow-rate prediction in rivers with rapid temporal fluctuations was predicted to be very low compared to that of water-level prediction. In this study, the Paldang Bridge Station of the Han River, which has a large flow-rate fluctuation and little influence from tidal waves in the estuary, was selected. In addition, time-series data with large flow fluctuations were selected to collect water-level and flow-rate data for 2 years and 7 months, which are relatively short in data length, to be used as training and prediction data for the LSTM and GRU models. When learning time-series water levels with very high time fluctuation in two models, the predicted water-level results in both models secured appropriate accuracy compared to observation water levels, but when training rapidly temporal fluctuation flow rates directly in two models, the predicted flow rates deteriorated significantly. Therefore, in this study, in order to accurately predict the rapidly changing flow rate, the water-level data predicted by the two models could be used as input data for the rating curve to significantly improve the prediction accuracy of the flow rates. Finally, the results of this study are expected to be sufficiently used as the data of flood warning system in urban rivers where the observation length of hydrological data is not relatively long and the flow-rate changes rapidly.

A Study on the Management of Stock Data with an Object Oriented Database Management System (객체지향 데이타베이스를 이용한 주식데이타 관리에 관한 연구)

  • 허순영;김형민
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.3
    • /
    • pp.197-214
    • /
    • 1996
  • Financial analysis of stock data usually involves extensive computation of large amount of time series data sets. To handle the large size of the data sets and complexity of the analyses, database management systems have been increasingly adaopted for efficient management of stock data. Specially, relational database management system is employed more widely due to its simplistic data management approach. However, the normalized two-dimensional tables and the structured query language of the relational system turn out to be less effective than expected in accommodating time series stock data as well as the various computational operations. This paper explores a new data management approach to stock data management on the basis of an object-oriented database management system (ODBMS), and proposes a data model supporting times series data storage and incorporating a set of financial analysis functions. In terms of functional stock data analysis, it specially focuses on a primitive set of operations such as variance of stock data. In accomplishing this, we first point out the problems of a relational approach to the management of stock data and show the strength of the ODBMS. We secondly propose an object model delineating the structural relationships among objects used in the stock data management and behavioral operations involved in the financial analysis. A prototype system is developed using a commercial ODBMS.

  • PDF

Implementation of an Open Prediction Engine for Time-Series Data Using Levinson-Durbin Algorithm and Newton-Raphson Method (Levinson-Durbin 알고리듬과 Newton-Raphson Method를 이용한 개방형 시계열 데이터 예측엔진 구현에 관한 연구)

  • Koo, Jin-Mo;Hong, Tae-Hwa;Kim, Hag-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2968-2970
    • /
    • 2000
  • 시계열(time series)이란 한 사상 또는 여러 사상에 대하여 시간의 흐름에 따라 일정한 간격으로 이들을 관측하여 기록한 자료를 말한다. 이러한 시계열은 어떠한 경제현상이나 자연현상에 관한 시간적 변화를 나타내는 역사적 계열(historical series)이므로 어느 한 시점에서 관측된 시계열자료는 그 이전까지의 자료들에 주로 의존하게 된다. 따라서 시계열분석을 통한 예측에서는 과거의 자료들을 분석하여 법칙성을 발견해서 이를 모형화하여 추정하고. 이 추정된 모형을 사용하여 미래에 관측될 값들을 예측하게 된다. 본 연구에서는 ARMA (p, q)모형 (autoregressive moving-average model)을 이용하여 시계열 데이터를 분석하며 계수의 추정에는 Levinson-Durbin 알고리듬과 Newton-Raphson Method를 이용한다.

  • PDF

Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method (이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.83-105
    • /
    • 2019
  • This study aims to suggest an effective method for the automatic classification of keywords with similar patterns by calculating pattern similarity of temporal data. For this, large scale news on the Web were collected and time series data composed of 120 time segments were built. To make training data set for the performance test of the proposed model, 440 representative keywords were manually classified according to 8 types of trend. This study introduces a Dynamic Time Warping(DTW) method which have been commonly used in the field of time series analytics, and proposes an application model, MA-DTW based on a Moving Average(MA) method which gives a good explanation on a tendency of trend curve. As a result of the automatic classification by a k-Nearest Neighbor(kNN) algorithm, Euclidean Distance(ED) and DTW showed 48.2% and 66.6% of maximum micro-averaged F1 score respectively, whereas the proposed model represented 74.3% of the best micro-averaged F1 score. In all respect of the comprehensive experiments, the suggested model outperformed the methods of ED and DTW.

Simulation of Turbulent Flow and Surface Wave Fields around Series 60 $C_B$=0.6 Ship Model

  • Kim, Hyoung-Tae;Kim, Jung-Joong
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.1
    • /
    • pp.38-54
    • /
    • 2001
  • A finite difference method for calculating turbulent flow and surface wave fields around a ship model is evaluated through the comparison with the experimental data of a Series 60 $C_B$=0.6 ship model. The method solves the Reynolds-averaged Navior-Stokes Equations using the non-staggered grid system, the four-stage Runge-Kutta scheme for the temporal integration of governing equations and the Bladwin-Lomax model for the turbulence closure. The free surface waves are captured by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and free-surface conforming grids are generated at each time step so that one of the grid surfaces coincides always with the free surface. The computational results show an overall close agreement with the experimental data and verify that the present method can simulate well the turbulent boundary layers and wakes as well as the free-surface waves.

  • PDF