Robustness of Bayes Forecast to Non-normality
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ABSTRACT

Bayesian procedures are in vogue to revise the parameter estimates of the fore-
casting model in the light of actual time series data. In this paper, we study the
Bayes forecast for demand and the risk when (a) ‘noise’ and (b) mean demand
rate in a constant process model have moderately non-normal probability distributions.

1. Introduction

Suppose we believe the time series can be adequately described by the constant
model, x;=0-¢; when fis the unknown mean demand and ¢; is the random
component (noise) assumed to be normally distributed with known mean # and
precision 7. In Bayesian formulation, we further assume that at the starting
of the forecasting process (time zero), the true mean § is a priori nermally
distributed with known mean g and precision 7. ‘Extensive form of analysis’
with quadratic error loss gives the Bayes estimator, §*(7), for § which has mini-
mum risk p* associated with the actual sample information. For a constant
process, the Bayes forecast for period T4 is then 2., =0%(T) with fcrecast
variance p*.

Earlier workers were mainly concerned with the sensitivity of statistical pro-
cedure to the inherent non-normality of the parent distribution. Finucan

(1971) studied the effect of non-normality on the posterior variance but his
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results did not convey anything regarding the effect of individual observations.
Such studies can be categorised as Standard Inference Robustness (SIR) in
contrast to ‘Inference Robustness with respect to Prior’ (IRP) when an invésti-
gator is interested in examining the sensitivity of the Bayes statistical procedure
to non-ncrmality of the assumed prior distribution,

In this paper, we shall compare SIR with IRP of the Bayes forecast and
associated forecast Bayes risk (forecast variance) for the actual time series data
under ‘moderate’ amount of non-normality. Unlike Box-Tiao (1973) symmetric
non-normal family, we consider a family of non-normal populations represented

by the first four terms of the Edgewcrth series.
FO)=¢(0) =g 2P () +p 2D () + o A2 (), (1)
where y=(z=a) B $(3) =2 )b P (1) =(d/d)* $(5) with mean

@, precision S and non-normality parameter A= (A, 4,) measuring skewness
A(=0;) and kurtosis A,(=f,—3).

When 2 is within Barton-Dennis (1952) region (BDR) the theoretical speci-
fication of the population by Edgewcrth distribution covers a variety of mod-
erately non-normal populations. An advantage with the Edgewocrth series ap-
prcach is that it cbtains results as a sum of the ncrmal theory function and
certain corrective terms due to skewness and kurtosis. It has also enabled a fairly

accurate estimation of the extent of the error involved in use of normal theory

precedure for moderately non-normal variates,
2, Bayes Forecast and Forecast Variance

Non-normal Demand (SIR). Let x= (x;,x,--+,x;) be the T cbservations of the
time series follewing constant precess. Suppcse that this random sample comes
from Ecgewcrth distribution (1) with urknown mean 6, known precision 7
and fixed non-ncrmality parameter A lying in BDR. Let us further suppose that
the true mean § is arandem variable having a-pricri known ncrmal p.d.f.with
mean p and precision 7. Bansal (1977 b) derived the postericr distribution of

6 as
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£.(0]x)= (2x7') -+ 5-1[1+%23(s 351)+ (S 6S+3T)+ I RICK

—98,— 68,5, +365,+95,2— 15T) 7 exp [—5?(0—“(7“))]2, (2)
the Bayes forecast
#s(TYy=2:(T)— 5 T'7Gs™[67 223{1+7('L' +A4)) +22,{rd;+34,(1+77")}
+2,207° {A2A3+ (TAy+94,4,) 7" +15TAz'?) — 7 (34,4, -+ (T+6) 4
+6Q2T+3)7" A4} +3(T+4) 4,17, (3)

and the associated forecast variance (Bayes risk)

=TGN = Ao T (P4 3,G3p7 = D) oy A {PAiH18 ¢ (rA,—1)

1577/ 67 A, 3T) + o A2 A2+ 977 (2414 347)

H45072(34,7 4 2TAy) + 21002 — (94, + 64,4, + 547 (A7 + (T+3) 4)

+31507%) +97 (4dy+ A2+ 182" — 15TI]— [25(T) — 24 (T) ] )
where

s—1+—— V725 {7 ds—34,(1—77") +# As{r?As— 674, (1—777)

+(I=7)243(T— D)} oy 270 (AR 430 (244345 4972
(2T Ay+3A4.2) +30778) — 3720 (24,45 + 64,246 (T+3) 4, +21¢'2)
+97(34,+4,2) +9rz'—15T7, (5

M=% (=t (D) Si=3% (V7O for k=1,2,,6.7'= @+ T
i=1 i=

and #y(T)=(zpu+Trx)r’ are normal theory forecast variance and forecast

for period (T+1), respectively.

Non- normal Noise (IRP). Here we assume that the observed time series, (x,,
Xp+0+,X7) =X, generated by constant process form a random sample from N (0, y~1)
with known precision 7. In the absence of ‘true’ prior p.d.f., earlier workers
assumed convenient N(y, 771) conjugate prior distribution with known para-
meters u, 7. Bansal (1977 a) relaxed this conventional assumption and assumed
prior p.d.f. as Edgeworth with known g, 7 and fixed non-normality parameter
A lying in BDR to study the Robustness of Bayes estimator for # against non-

normality with increasing sample information.
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The posterior p.d.f. of # with respect to prior (1) is

£461%) = (277)77C, 7 expl— 5, (0= (T)ACN+ - 25 MBI (= p)*=3)

X (O—p) + oy Ae(e2(0— )t —62(0— )2 +3) +_71? A2 (03 (0 — )5 — 1507
X (0—p)*+450 (60—~ 15}, ©

the Bayes forecast

2(T) =24(T) +E% At /T T~ pee’ —p(x— ) +—é« A pre’

(Gt =3(x =)} + ApPe0 (B (5 — )" — 1057 (2= 1)?
+15(x—)11Gs™, M

and the associated risk is given by

Pt =Ty 14— A (e (e — 1)+ 3p (2 — )} (R = 1)
g AT (E = ) 642 (207 —p) (x— 12— 3p (4ot — 1))

o Ao (9 (= )5+ 15234 (207" — ) (3 — 1) 4= 45243
(4ot —p) (x— @) 2+ 1547 (670" —p)} ] = [2:(T) — 2, (T) 1% G
with

p=1T¢’ and Gy=1+4— Lt Ve {tr(—p0)*=3) G—4)

g Al P e 1) = 6o (e )23} oy A (3 G — )
— 15032 (7 ) 452 (e — ) = 15). ©)

3. Discussion

It is easily seen that for A=0, expressions (1)-(4) and (6)-(8) collapse to
corresponding normal theory results. Further, we observe that the sample obser-
vations (xy,%,,+++,xr) appear as sample mean ¥ in the IRP, On the other hand,
in SIR x;'s appear in a more meaningful (though complicated) form. This im-
plies that the effect of non-normality in the parent will vary with individual
sample observations. Earlier studies by the author, however, indicated that the

posterior p.d.f. for 6 is less sensitive to non-normality in the prior p.d.f. of &
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than the non-normality in the p.d.f. of ‘noise’ ;.

In order to bring out difference between IRP and SIR, we considered a ran-
dom sample x= (86, 94, 97, 95, 106, 107, 103, 92, 98, 104) of size 10 from a con-
stant process with error variance 150 and assumed that, the unknown @ had
true mean 100 and variance 25, The Bayes forecast and the associated forecast
risk for T=1,2,5,10 were computed for the normal and three other non-

normal distributions with A lying in BDR.

Table 1: Forecast with Edgeworth as Noise and Demand (underlined) p.d.f. with Non-nor-
mality i for Observed Constant Process.

Forecast for (7+1)'t period

T  Actual Demand Sample mean Normal Edgeworth
0.0,0.00  (0.3,0.5) 0.4,1.5) 0.5,2.9)

1 86.0 86.0 98.00 98.10 99. 92 104. 22
99.97 100. 69 101. 40
2 94.0 90.0 97.50 97.68 99. 07 100.90
99.52 100. 33 101.12
5 106.0 95.6 98. 00 97.94 98.43 98.78
99.18 99.72 100. 23
10 104.0 98.2 98. 88 98. 64 98. 82 98.91
99.33 99.59 99.79

We observe that the departure from normality assumption, in each case,
yields larger forecasts and the error in forecast steadily decreases with increasing
sample information.

Further, the Bayes forecast is less sensitive(though higher) to non-normality
in the prior p.d.f. of @ than that in ‘noise’ &,.

As reported by Finucan (1971), we observe that the forecast variance is re-
duced for increasing non-normality in the demand whereas it is always higher
than normal theory value. Once again, it suggests that actual observations in
the sample play an important role in deciding the effect of non-normality of
‘noise’ ¢; on the forecast variance. Further, the effect of non-normality is seen

to diminish with increasing sample size.
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Table 2: Forecast Variance for Noise and Demand (underlined) Edgeworth wiht Non-nor-

mality A for Observed Constant Process.

Forecast Variance for (7--1)'® period

T Var (X) Normal Edgeworth

1/rT (0.0,0.0) (0.3,0.5) 0.4,1.5) 0.5,2.4)

1 150.0 21.43 25. 66 30.42 19. 28
15. 40 11.44 6.47_

2 75.0 18.73 21.63 23.60 21.79

12.49 7.83 1.98

5 30.0 13.64 14.58 15.71 16.45

10.90 8.06 4.95

10 15.0 9. 38 9.55 10.15 10. 42

8.56 7.40 6.35
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