• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.032 seconds

CUSUM of Squares Chart for the Detection of Variance Change in the Process

  • Lee, Jeong-Hyeong;Cho, Sin-Sup;Kim, Jae-Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.126-142
    • /
    • 1998
  • Traditional statistical process control(SPC) assumes that consective observations from a process are independent. In industrial practice, however, observations are ofter serially correlated. A common a, pp.oach to building control charts for autocorrelatd data is to a, pp.y classical SPC to the residuals from a time series model fitted. Unfortunately, one cannot completely escape the effects of autocorrelation by using charts based on residuals of time series model. For the detection of variance change in the process we propose a CUSUM of squares control chart which does not require the model identification. The proposed CUSUM of squares chart and the conventional control charts are compared by a Monte Carlo simulation. It is shown that the CUSUM of squares chart is more effective in the presence of dependency in the processes.

  • PDF

A Study on the Distributed Lag Model by Bayesian Decision Making Method (분포시차모형의 Bayesian 의사결정법에 관한 연구)

  • 이필령
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.8 no.11
    • /
    • pp.27-34
    • /
    • 1985
  • Recently the distributed lag models for time series data have been used in several quantitative analyses. But the analyses of time series which have the serial correlations in error terms and the lagged values of dependent variables violate the hypothesis of OLS method. This paper suggests that the approach technique of distributed lay model with serial correlation should be applied by the Bayesian inference to estimate the parameters. For the application of distributed lag model by Bayesian analysis, the data for monthly consumption expenditure per household by items of commodities from 1972 to 1981 are used in order to estimate the lagged coefficient of processed food and the regression coefficient of the food and beverage.

  • PDF

An Empirical Study on Aircraft Repair Parts Prediction Model Using Machine Learning (머신러닝을 이용한 항공기 수리부속 예측 모델의 실증적 연구)

  • Lee, Chang-Ho;Kim, Woong-Yi;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.101-109
    • /
    • 2018
  • In order to predict the future needs of the aircraft repair parts, each military group develops and applies various techniques to their characteristics. However, the aircraft and the equipped weapon systems are becoming increasingly advanced, and there is a problem in improving the hit rate by applying the existing demand prediction technique due to the change of the aircraft condition according to the long term operation of the aircraft. In this study, we propose a new prediction model based on the conventional time-series analysis technique to improve the prediction accuracy of aircraft repair parts by using machine learning model. And we show the most effective predictive method by demonstrating the change of hit rate based on actual data.

Land-Cover Vegetation Change Detection based on Harmonic Analysis of MODIS NDVI Time Series Data (MODIS NDVI 시계열 자료의 하모닉 분석을 통한 지표 식생 변화 탐지)

  • Jung, Myunghee;Chang, Eunmi
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.351-360
    • /
    • 2013
  • Harmonic analysis enables to characterize patterns of variation in MODIS NDVI time series data and track changes in ground vegetation cover. In harmonic analysis, a periodic phenomenon of time series data is decomposed into the sum of a series of sinusoidal waves and an additive term. Each wave is defined by an amplitude and a phase angle and accounts for the portion of variance of complex curve. In this study, harmonic analysis was explored to tract ground vegetation variation through time for land-cover vegetation change detection. The process also enables to reconstruct observed time series data including various noise components. Harmonic model was tested with simulation data to validate its performance. Then, the suggested change detection method was applied to MODIS NDVI time series data over the study period (2006-2012) for a selected test area located in the northern plateau of Korean peninsula. The results show that the proposed approach is potentially an effective way to understand the pattern of NDVI variation and detect the change for long-term monitoring of land cover.

Forecasting Demand of Agricultural Tractor, Riding Type Rice Transplanter and Combine Harvester by using an ARIMA Model

  • Kim, Byounggap;Shin, Seung-Yeoub;Kim, Yu Yong;Yum, Sunghyun;Kim, Jinoh
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Purpose: The goal of this study was to develop a methodology for the demand forecast of tractor, riding type rice transplanter and combine harvester using an ARIMA (autoregressive integrated moving average) model, one of time series analysis methods, and to forecast their demands from 2012 to 2021 in South Korea. Methods: To forecast the demands of three kinds of machines, ARIMA models were constructed by following three stages; identification, estimation and diagnose. Time series used were supply and stock of each machine and the analysis tool was SAS 9.2 for Windows XP. Results: Six final models, supply based ones and stock based ones for each machine, were constructed from 32 tentative models identified by examining the ACF (autocorrelation function) plots and the PACF (partial autocorrelation function) plots. All demand series forecasted by the final models showed increasing trends and fluctuations with two-year period. Conclusions: Some forecast results of this study are not applicable immediately due to periodic fluctuation and large variation. However, it can be advanced by incorporating treatment of outliers or combining with another forecast methods.

Optimal Motions for a Robot Manipulator amid Obstacles by the Representation of Fourier Series (후리에 급수 표현에 의한 로봇 팔의 장애물 중에서의 최적 운동)

  • 박종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.406-412
    • /
    • 1996
  • Optimal trajectory for a robot manipulator minimizing actuator torques or energy consumption in a fixed traveling time is obtained in the presence of obstacles. All joint displacements are represented in finite terms of Fourier cosine series and the coefficients of the series are obtained optimally by nonlinear programming. Thus, the geometric path need not be prespecified and the full dynamic model is employed. To avoid the obstacles, the concept of penalty area is newly introduced and this penalty area is included in the performance index with an appropriate weighting coefficient. This optimal trajectory will be useful as a geometric path in the minimum-time trajectory planning problem.

  • PDF

Analysis of Nonlinear Behavior in Love Model with External Force (외력을 가진 사랑 모델에서 비선형 거동 해석)

  • Huang, Lyni-Un;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.845-850
    • /
    • 2015
  • Love which is one of the emotional of mankind, has been studied in sociology and psychology as a matter of great concern. Through such a research, the researchers have provided the basic mathematical model for love model, we cannot find nonlinear characteristics through the basic love model. Therefore, in this paper, in order to find nonlinear behaviors in the basic love model, we apply external force to the basic love model. Then we confirm the existence of nonlinear behaviors through time series and phase portrait. We also confirm that this nonlinear behaviors have the periodic doubling, chaotic phenomena and periodic process which are very similar to typical chaotic occurrence phenomena.

Estimating Automobile Insurance Premiums Based on Time Series Regression (시계열 회귀모형에 근거한 자동차 보험료 추정)

  • Kim, Yeong-Hwa;Park, Wonseo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.237-252
    • /
    • 2013
  • An estimation model for premiums and components is essential to determine reasonable insurance premiums. In this study, we introduce diverse models for the estimation of property damage premiums(premium, depth and frequency) that include a regression model using a dummy variable, additive independent variable model, autoregressive error model, seasonal ARIMA model and intervention model. In addition, the actual property damage premium data was used to estimate the premium, depth and frequency for each model. The estimation results of the models are comparatively examined by comparing the RMSE(Root Mean Squared Errors) of estimates and actual data. Based on real data analysis, we found that the autoregressive error model showed the best performance.

CutPaste-Based Anomaly Detection Model using Multi Scale Feature Extraction in Time Series Streaming Data

  • Jeon, Byeong-Uk;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2787-2800
    • /
    • 2022
  • The aging society increases emergency situations of the elderly living alone and a variety of social crimes. In order to prevent them, techniques to detect emergency situations through voice are actively researched. This study proposes CutPaste-based anomaly detection model using multi-scale feature extraction in time series streaming data. In the proposed method, an audio file is converted into a spectrogram. In this way, it is possible to use an algorithm for image data, such as CNN. After that, mutli-scale feature extraction is applied. Three images drawn from Adaptive Pooling layer that has different-sized kernels are merged. In consideration of various types of anomaly, including point anomaly, contextual anomaly, and collective anomaly, the limitations of a conventional anomaly model are improved. Finally, CutPaste-based anomaly detection is conducted. Since the model is trained through self-supervised learning, it is possible to detect a diversity of emergency situations as anomaly without labeling. Therefore, the proposed model overcomes the limitations of a conventional model that classifies only labelled emergency situations. Also, the proposed model is evaluated to have better performance than a conventional anomaly detection model.

Air Pollution and Daily Mortality in Busan using a Time Series Analysis (시계열자료를 이용한 대기오염과 일별 사망수의 관련성 분석)

  • 서화숙;정효준;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1061-1068
    • /
    • 2002
  • To identify possible associations with concentrations of ambient air pollutants and daily mortality in Busan, this study assessed the effects of air pollution for the time period 1999-2000. Poisson regression analysis by Generalized Additive Model were conducted considering trend, season, meteorology, and day-of-the-week as confounders in a nonparametric approach. Busan had a 10% increase in mortality in persons aged 65 and older(95% Cl : 1.01-1.10) in association with IQR in $NO_2$(lagged 2 days). An increase of $NO_2$(lagged 2days) was associated with a 4% increase in respiratory mortality(Cl : 1.02-1.11) and CO(lagged 1 day) showed a 3% increase(Cl : 1.00-1.07).