• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.032 seconds

Seasonal adjustment for monthly time series based on daily time series (일별 시계열을 이용한 월별 시계열의 계절조정)

  • Geung-Hee Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.457-471
    • /
    • 2023
  • The monthly series is an aggregation of daily values. In the absence of observable daily data, calendar effects such as trading day and holidays are estimated using a RegARIMA model. However, if the daily series were observable, these calendar effects could be estimated directly from the daily series, potentially improving the seasonal adjustment of the monthly time series. In this paper, we propose a method to improve the seasonal adjustment of monthly time series by using calendar variation estimation based on daily time series. We apply this seasonal adjustment method to three monthly time series and compare our results with those obtained using X-13ARIMA-SEATS.

Implementation of Fund Recommendation System Using Machine Learning

  • Park, Chae-eun;Lee, Dong-seok;Nam, Sung-hyun;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.183-190
    • /
    • 2021
  • In this paper, we implement a system for a fund recommendation based on the investment propensity and for a future fund price prediction. The investment propensity is classified by scoring user responses to series of questions. The proposed system recommends the funds with a suitable risk rating to the investment propensity of the user. The future fund prices are predicted by Prophet model which is one of the machine learning methods for time series data prediction. Prophet model predicts future fund prices by learning the parameters related to trend changes. The prediction by Prophet model is simple and fast because the temporal dependency for predicting the time-series data can be removed. We implement web pages for the fund recommendation and for the future fund price prediction.

Stochastic Properties of Water Quality Variation in Downstream Part of Han River (한강 하류부의 수질변동에 대한 추계학적 특성(I) - 특히 뚝도 및 노량진 지점의 DO, 탁도, 수온의 변동을 중심으로 -)

  • 이홍근
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.23-36
    • /
    • 1982
  • The stochastic variations and structures of time series data on water quality were examined by employing the techniques of autocorrelation function, variance spectrum, Fourier series, autoregressive model and ARIMA model. These time series included hourly and daily observation on DO, turbidity, conductivity pH and water temperature. The measurement was made by automatic recording instrument at Noryangjin and Dook-do located in the downstream part of Han River during 1975 and 1976. Hourly water quality time series varied with the dominant 24-hour periodicity, and the 12-hour periodicity was also observed. An important factor affecting 24-hour periodic variation of DO is believed to be photosynthesis by algae. These phenomena might be attributable to periodic discharges of municipal sewage. Noryangjin site showed the more distinct 12-hour periodicity than Dook-do site did, and tidal effect might be responsible for the difference. The water quality, as measured by DO and turbidity, was better in the afternoon compared with the quality in the morning. This change can be explained by the periodic variation of DO, temperature and the amount of municipal wewage discharge. It was also observed that the water temperature at Noryangjin was higher than the temperature at Dook-do. This difference might have been caused by the pollutants that were added to the section between two sites. The correlation coefficients between some of the variables were fairly high. For example, the coefficient was -0.88 between DO and water temperature, 0.75 between turbidity and river flow, and 0.957 between water temperature and air temperature. The lag time of heat transfer from the air to the water was estimated as 24 days. The first order auto-regressive model was appropriate for explaning standardized hourly DO time series. The ARIMA model of (1, 0, 0) type provided relatively satisfactory results for daily DO time series after the removal of significant harmonic value.

  • PDF

Style-Based Transformer for Time Series Forecasting (시계열 예측을 위한 스타일 기반 트랜스포머)

  • Kim, Dong-Keon;Kim, Kwangsu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.579-586
    • /
    • 2021
  • Time series forecasting refers to predicting future time information based on past time information. Accurately predicting future information is crucial because it is used for establishing strategies or making policy decisions in various fields. Recently, a transformer model has been mainly studied for a time series prediction model. However, the existing transformer model has a limitation in that it has an auto-regressive structure in which the output result is input again when the prediction sequence is output. This limitation causes a problem in that accuracy is lowered when predicting a distant time point. This paper proposes a sequential decoding model focusing on the style transformation technique to handle these problems and make more precise time series forecasting. The proposed model has a structure in which the contents of past data are extracted from the transformer-encoder and reflected in the style-based decoder to generate the predictive sequence. Unlike the decoder structure of the conventional auto-regressive transformer, this structure has the advantage of being able to more accurately predict information from a distant view because the prediction sequence is output all at once. As a result of conducting a prediction experiment with various time series datasets with different data characteristics, it was shown that the model presented in this paper has better prediction accuracy than other existing time series prediction models.

Development of a Transient Groundwater Flow Model in Pyoseon Watershed of Jeju Island: Use of a Convolution Method (컨벌루션 기법을 이용한 제주도 표선유역 부정류 지하수 흐름 모델 개발)

  • Kim, Seung-Gu;Koo, Min-Ho;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.481-494
    • /
    • 2015
  • Groundwater level hydrographs from observation wells in Jeju island clearly illustrate distinctive features of recharge showing the time-delaying and dispersive process, mainly affected by the thickness and hydrogeologic properties of the unsaturated zone. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. Recently, a convolution model was suggested as a mathematical technique to generate time series of recharge that incorporated the time-delaying and dispersive process. A groundwater flow model was developed to simulate transient groundwater level fluctuations in Pyoseon area of Jeju island. The model used the convolution technique to simulate temporal variations of groundwater levels. By making a series of trial-and-error adjustments, transient model calibration was conducted for various input parameters of both the groundwater flow model and the convolution model. The calibrated model could simulate water level fluctuations closely coinciding with measurements from 8 observation wells in the model area. Consequently, it is expected that, in transient groundwater flow models, the convolution technique can be effectively used to generate a time series of recharge.

Financial Application of Time Series Prediction based on Genetic Programming

  • Yoshihara, Ikuo;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.524-524
    • /
    • 2000
  • We have been developing a method to build one-step-ahead prediction models for time series using genetic programming (GP). Our model building method consists of two stages. In the first stage, functional forms of the models are inherited from their parent models through crossover operation of GP. In the second stage, the parameters of the newborn model arc optimized based on an iterative method just like the back propagation. The proposed method has been applied to various kinds of time series problems. An application to the seismic ground motion was presented in the KACC'99, and since then the method has been improved in many aspects, for example, additions of new node functions, improvements of the node functions, and new exploitations of many kinds of mutation operators. The new ideas and trials enhance the ability to generate effective and complicated models and reduce CPU time. Today, we will present a couple of financial applications, espc:cially focusing on gold price prediction in Tokyo market.

  • PDF

The Prediction of Chaos Time Series Utilizing Inclined Vector (기울기백터를 이용한 카오스 시계열에 대한 예측)

  • Weon, Sek-Jun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.421-428
    • /
    • 2002
  • The local prediction method utilizing embedding vector loses the prediction power when the parameter r estimation is not exact for predicting the chaos time series induced from the high order differential equation. In spite of the fact that there have been a lot of suggestions regarding how to estimate the delay time ($\tau$), no specific method is proposed to apply to any time series. The inclinded linear model, which utilizes inclinded netter, yields satisfying degree of prediction power without estimating exact delay time ($\tau$). The usefulness of this approach has been indicated not only theoretically but also in practical situation when the method w8s applied to economical time series analysis.

Parameter Estimation and Comparison for SRGMs and ARIMA Model in Software Failure Data

  • Song, Kwang Yoon;Chang, In Hong;Lee, Dong Su
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.193-199
    • /
    • 2014
  • As the requirement on the quality of the system has increased, the reliability is very important part in terms of enhance stability and to provide high quality services to customers. Many statistical models have been developed in the past years for the estimation of software reliability. We consider the functions for NHPP software reliability model and time series model in software failure data. We estimate parameters for the proposed models from three data sets. The values of SSE and MSE is presented from three data sets. We compare the predicted number of faults with the actual three data sets using the NHPP software reliability model and time series model.

A Study on Demanding forecasting Model of a Cadastral Surveying Operation by analyzing its primary factors (지적측량업무 영향요인 분석을 통한 수요예측모형 연구)

  • Song, Myeong-Suk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.477-481
    • /
    • 2007
  • The purpose of this study is to provide the ideal forecasting model of cadastral survey work load through the Economeatric Analysis of Time Series, Granger Causality and VAR Model Analysis, it suggested the forecasting reference materials for the total amount of cadastral survey general work load. The main result is that the derive of the environment variables which affect cadastral survey general work load and the outcome of VAR(vector auto regression) analysis materials(impulse response function and forecast error variance decomposition analysis materials), which explain the change of general work load depending on altering the environment variables. And also, For confirming the stability of time series data, we took a unit root test, ADF(Augmented Dickey-Fuller) analysis and the time series model analysis derives the best cadastral forecasting model regarding on general cadastral survey work load. And also, it showed up the various standards that are applied the statistical method of econometric analysis so it enhanced the prior aggregate system of cadastral survey work load forecasting.

  • PDF

A STUDY ON SYNTHETIC GENERATION OF MONTHLY STREAMFLOW BY BIVARIATE ANALYSIS (BIVARIATE ANALYSIS에 의한 월류량에 모의발생에 관한 연구)

  • Seo, Byeong-Ha;Yun, Yong-Nam;Gang, Gwan-Won
    • Water for future
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 1979
  • The sequences of monthly streamflows constitute a non-statonary time series. The purely stochastic model has been applied to data generation of non-stationary time series. Tow different mothods--single site and multisite generation--have been used on the hydrologic time series. In this study the synthetic generation method by bivariate analysis, studied by Thomas Fiering, one of multi-site models, has been applied to the historical data on monthly streamflows at two sites in Nakdong River, and also for validity of this model the single site Thomas Fiering model applied. Through statistical analysis it has been shown that the performance of bivariate Thomas Fiering model was better than that of the other. By comparison of mean and standard deviaion between the historical and the generated, and cross correlogram interpretation, it has been known that the model used herein has good performance to simultaneously generate the monthly streamflows at two sites in a river hasin.

  • PDF