• Title/Summary/Keyword: Time-of-flight magnetic resonance angiography

Search Result 36, Processing Time 0.018 seconds

A Study on High-Resolution Technique in MRI Scan for Cerebral Aneurysm Disease -Comparison between High-Resolution Technique and Standard Technique- (뇌 동맥류 질환 자기공명검사에서 고분해능(High-Resolution) 기법의 관한 연구 - 고분해능기법과 표준기법 비교 -)

  • Choi, Sung-Hyun;Goo, Eun-Hoe;Hwang, Sun-Kwang;Lee, Gang-Won;Lee, Jong-Woong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • The purpose of this study was to examine usefulness of 3T equipment-based time-of-flight magnetic resonance angiography (3T-TOF MRA) by comparing standard technique (ST) with high resolution technique (HRT) in evaluation of cerebral blood vessel. The 3T-TOF MRA was performed for 31 patients who were suspected of having cerebrovascular disease from March to July 2010. For evaluation of cerebral blood vessel, classification was conducted randomly: group I that included vertebral artery and basilar artery, group II that ranged from 2.5cm before basin part of common carotid artery to basin part of internal and external carotid arteries and to genu part of internal carotid artery, group III that ranged from vertebral part of internal carotid artery to the first basin art of anterior and middle cerebral through education recognizes the importance of dose reduction and examine if their efforts and further reduce patient dose could achieve optimization of the medical exposure is considered.

  • PDF

Evaluate the Possibility of MT Pulse at 3T CE-TOF-MRA in Patients with Cerebral Infarction (뇌경색 환자의 3Tesla CE-TOF-MRA에서 MT 펄스의 유용성)

  • Bae, Sung-Jin
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.265-270
    • /
    • 2007
  • The purpose of this study was to evaluate the possibility of utilizing MT pulse at CE-TOF-MRA in patients with cerebral infarction. MRA using time-of-flight(TOF) technique with varying offset frequencies (0, 600, 1,200, and 1,800 Hz) magnetization transfer were performed in 10 patients with cerebral infarction at 3.0T MR scanner. CE-TOF-MRA and TOF-SPGR in normal vessel shown decreased SNR and increased CNR. The highest CNR in narrowing vessel shown at CE-TOF-MRA using 600 and 1,200 Hz offset frequencies. CNR in stenosis vessel increased dependent on using offset frequencies. The occlusion was clearly shown, and the highest CNR in occlusion shown at CE-TOF-MRA using 1,800 Hz offset frequencies. There was no shape variation in narrowing vessel or no visualizing vessel.

  • PDF

Changes in Total Cerebral Blood Flow with Aging, Parenchymal Volume Changes, and Vascular Abnormalities: a Two-dimensional Phase-Contrast MRI Study (나이와 뇌실질부피 변화 및 혈관이상에 따른 총뇌혈류량 변화: 이차원 위상대조 자기공명영상을 이용한 연구)

  • Liu Haiying;Shin Tae-Beom;Youn Seong-Kuk;Oh Jong-Yong;Lee Young-Il;Choi Sun-Seob
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.17-23
    • /
    • 2004
  • Purpose : To evaluate changes in total cerebral blood flow (tCBF) with aging, parenchymal volume changes and vascular abnormalities, using 2 dimensional (D) phase-contrast magnetic resonance imaging (PC MRI). Materials and Methods : Routine brain MRI including T2 weighted image, time-of-flight (TOF) MR Angiography (MRA) and 2D PC MRI were performed in 73 individuals, including 12 volunteers. Normal subjects (12 volunteers, and 21 individuals with normal MRI and normal MRA) were classified into groups according to age (18-29, 30-49 and 50-66 years). For the group with abnormalities in brain MRIs, cerebral parenchymal volume changes were scored according to the T2 weighted images, and atherosclerotic changes were scored according to the MRA findings. Abnormal groups were classified into 4 groups: (i) mild reduction in volume, (ii) marked reduction in volume by parenchymal volume and atherosclerotic changes, and (iii) increased volume and (iv) Moya-moya disease. Volumetric flow was measured at the internal carotid artery (ICA) and vertebral artery bilaterally using the velocity-flow diagrams from PC MRI, and combined 4 vessel flows and tCBF were compared among all the groups. Results : The age-specific distribution of tCBFs in normal subjects were as follows: $12.0{\pm}2.1ml/sec$ in 18-29 years group, $11.8{\pm}1.9ml/sec$ in 30-49 years group, $10.9{\pm}2.2ml/sec$ in 50-66 years group. The distribution of tCBFs in the different subsets of the abnormal population were as follows: $9.5{\pm}2.5ml/sec$ in the group with mild reduction in volume, $7.6{\pm}2.0ml/sec$ in the group with marked reduction in volume, and $7.3{\pm}1.2ml/sec$ and $7.0{\pm}1.1ml/sec$ in the increased parenchymal volume and Moya-moya disease groups respectively. Conclusion : Total cerebral blood flow decreases with increasing age with a concomitant reduction in parenchymal volumes and increasing atherosclerotic changes. It is also reduced in the presence of increased parenchymal volume and Moya-moya disease.2D PC MRI can be used as a tool to evaluate tCBF with aging and in the presence of various conditions that can affect parenchymal volume and cerebral vasculature.

  • PDF

Obtaining Informed Consent Using Patient Specific 3D Printing Cerebral Aneurysm Model

  • Kim, Pil Soo;Choi, Chang Hwa;Han, In Ho;Lee, Jung Hwan;Choi, Hyuk Jin;Lee, Jae Il
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.398-404
    • /
    • 2019
  • Objective : Recently, three-dimensional (3D) printed models of the intracranial vascular have served as useful tools in simulation and training for cerebral aneurysm clipping surgery. Precise and realistic 3D printed aneurysm models may improve patients' understanding of the 3D cerebral aneurysm structure. Therefore, we created patient-specific 3D printed aneurysm models as an educational and clinical tool for patients undergoing aneurysm clipping surgery. Herein, we describe how these 3D models can be created and the effects of applying them for patient education purpose. Methods : Twenty patients with unruptured intracranial aneurysm were randomly divided into two groups. We explained and received informed consent from patients in whom 3D printed models-(group I) or computed tomography angiography-(group II) was used to explain aneurysm clipping surgery. The 3D printed intracranial aneurysm models were created based on time-of-flight magnetic resonance angiography using a 3D printer with acrylonitrile-butadiene-styrene resin as the model material. After describing the model to the patients, they completed a questionnaire about their understanding and satisfaction with aneurysm clipping surgery. Results : The 3D printed models were successfully made, and they precisely replicated the actual intracranial aneurysm structure of the corresponding patients. The use of the 3D model was associated with a higher understanding and satisfaction of preoperative patient education and consultation. On a 5-point Likert scale, the average level of understanding was scored as 4.7 (range, 3.0-5.0) in group I. In group II, the average response was 2.5 (range, 2.0-3.0). Conclusion : The 3D printed models were accurate and useful for understanding the intracranial aneurysm structure. In this study, 3D printed intracranial aneurysm models were proven to be helpful in preoperative patient consultation.

Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery (유속신호증강효과의 자기공명혈관조영술을 이용한 뇌혈관검사에서 Half Scan Factor 적용한 영상 평가)

  • Choi, Young Jae;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.92-98
    • /
    • 2016
  • To aim of this study was to assess the full scan and half scan of imaging with half scan factor. Patients without a cerebral vascular disease (n = 30) and were subject to the full scan half scan, and set a region of interest in the cerebral artery from the three regions (C1, C2, C3) in the range of 7 to 8 mm. MIP (maximum intensity projection) to reconstruct the images in signal strength SNR (signal to noise ration), PSNR (peak signal noise to ratio), RMSE (root mean square error), MAE (mean absolute error) and calculated by paired t-test for use by statistics were analyzed. Scan time was half scan (4 minutes 53 seconds), the full scan (6 minutes 04 seconds). The mean measurement range (7.21 mm) of all the ROI in the brain blood vessel, was the SNR of the first C1 is completely scanned (58.66 dB), half-scan (62.10 dB), a positive correlation ($r^2=0.503$), for the second C2 SNR is completely scanned (70.30 dB), half-scan (74.67 dB) the amount of correlation ($r^2=0.575$), third C3 of a complete scan SNR (70.33 dB), half scan SNR (74.64 dB) in the amount of correlation between the It was analyzed with ($r^2=0.523$). Comparative full scan with half of SNR ($4.75{\pm}0.26dB$), PSNR ($21.87{\pm}0.28dB$), RMSE ($48.88{\pm}1.61$), was calculated as MAE ($25.56{\pm}2.2$). SNR is also applied to examine the half-scans are not many differences in the quality of the two scan methods were not statistically significant in the scan (p-value > .05) image takes less time than a full scan was used.

The Research to Correct Overestimation in TOF-MRA for Severity of Cerebrovascular Stenosis (3D-SPACE T2 기법에 의한 TOF-MRA검사 시 발생하는 혈관 내 협착 정도의 측정 오류 개선에 관한 연구)

  • Han, Yong Su;Kim, Ho Chul;Lee, Dong Young;Lee, Su Cheol;Ha, Seung Han;Kim, Min Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.180-188
    • /
    • 2014
  • It is very important accurate diagnosis and quick treatment in cerebrovascular disease, i.e. stenosis or occlusion that could be caused by risk factors such as poor dietary habits, insufficient exercise, and obesity. Time-of-flight magnetic resonance angiography (TOF-MRA), it is well known as diagnostic method without using contrast agent for cerebrovascular disease, is the most representative and reliable technique. Nevertheless, it still has measurement errors (also known as overestimation) for length of stenosis and area of occlusion in celebral infarction that is built by accumulation and rupture of plaques generated by hemodynamic turbulence. The purpose of this study is to show clinical trial feasibility for 3D-SPACE T2, which is improved by using signal attenuation effects of fluid velocity, in diagnosis of cerebrovascular disease. To model angiostenosis, strictures of different proportions (40%, 50%, 60%, and 70%) and virtual blood stream (normal saline) of different velocities (0.19 ml/sec, 1.5 ml/sec, 2.1 ml/sec, and 2.6 ml/sec) by using dialysis were made. Cross-examinations were performed for 3D-SPACE T2 and TOF-MRA (16 times each). The accuracy of measurement for length of stenosis was compared in all experimental conditions. 3D-SPACE 2T has superiority in terms of accuracy for measurements of the length of stenosis, compared with TOF-MRA. Also, it is robust in fast blood stream and large stenosis than TOF-MRA. 3D-SPACE 2T will be promising technique to increase diagnosis accuracy in narrow complex lesions as like two cerebral small vessels with stenosis, created by hemodynamic turbulence.