• Title/Summary/Keyword: Time-location data

Search Result 1,729, Processing Time 0.032 seconds

Information Service of Real-time Emergency Room Location using MongoDB (MongoDB를 활용한 실시간 응급실 위치 정보 서비스)

  • Shin, Dong-Jin;Hwang, Seung-Yeon;Jang, Seok-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.63-68
    • /
    • 2022
  • Currently, there are a total of 68 emergency rooms based on Seoul, South Korea, and there is a portal site that allows you to inquire the location of the emergency room, but it is difficult to use in an actual emergency situation because it consists of selecting a gu and a self-governing dong. In addition, it may be more efficient to go to the emergency room directly because you may miss the golden time necessary for survival in a situation where you call 119 and wait for the rescue team. Therefore, in this paper, we propose a service that can quickly search the location of the emergency room based on a specific location through various functions supported by MongoDB. After downloading emergency room location data based on Seoul Metropolitan City, storing it in MongoDB, processing the data through various processing techniques, and applying a spatial index, you can query the emergency room based on distance from a specific location in real time.

Estimation Method of Cable Fault Location in Rocket Motors Using M-sequence Signals (M시퀀스 신호를 이용한 로켓 추진기관 케이블 결함 위치 추정 기법)

  • Son, Ji-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.84-92
    • /
    • 2020
  • This paper describes the estimation method of cable fault location in rocket motors using M-sequence (Maximal Length Sequence). In order to estimate the location of a cable fault, three methods have been usually used: TDR (Time Domain Reflectometry), FDR (Frequency Domain Reflectometry), and TFDR (Time-Frequency Domain Reflectometry). However, these methods suffer the disadvantage of requiring users to be close to a test field, which is dangerous. The estimation method of cable fault location using M-sequence is proposed to solve this problem. The proposed method can make use of DAS (Data Acquisition System). The experiments were three cases: damaged, open, and short. The RG-58 coaxial cable was used in the experiments. As a result, the proposed method has better performance than that of conventional methods such as TDR and TFDR.

Memory Improvement Method for Extraction of Frequent Patterns in DataBase (데이터베이스에서 빈발패턴의 추출을 위한 메모리 향상기법)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • Since frequent item extraction so far requires searching for patterns and traversal for the FP-Tree, it is more likely to store the mining data in a tree and thus CPU time is required for its searching. In order to overcome these drawbacks, in this paper, we provide each item with its location identification of transaction data without relying on conditional FP-Tree and convert transaction data into 2-dimensional position information look-up table, resulting in the facilitation of time and spatial accessibility. We propose an algorithm that considers the mapping scheme between the location of items and items that guarantees the linear time complexity. Experimental results show that the proposed method can reduce many execution time and memory usage based on the data set obtained from the FIMI repository website.

Power System Fault Monitoring System using Wavelelet Transform and GPS for Accurate Time Synchronization (웨이블릿 변환과 GPS 정밀시각동기를 이용한 전력계통 고장점 모니터링 시스템에 관한 연구)

  • Kim, Gi-Taek;Kim, Hyuck-Soo;Choi, Jung-Yong
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.105-110
    • /
    • 2001
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paler describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

Implementation of Mobile Digital Signage System on the Moving Vehicle (차량 탑재형 모바일 디지털 사이니지 구현)

  • Kim, Hee Dong;Kim, Cha Sung
    • Journal of Information Technology Services
    • /
    • v.14 no.4
    • /
    • pp.257-267
    • /
    • 2015
  • We propose a vehicle-mounted, location-aware mobile digital signage system that can be used for public transportation through mobile communication. This paper proposes the installations of the LED display panels at the backside of the bus., which display traffic information to cars behind the bus. Information to be displayed would include, but is not limited to, road information, public commercials and private commercials. We propose the system architecture and further implement the prototype of mobile digital signage system for demonstration. The system is based on the Client-Server system. Each bus has a client terminal which detects the current location by a GPS receiver and sends its location information to the server using mobile communication function. The terminal device receives advertisements and traffic information from the server and displays it to the large LCD or LED panel installed at the inside and outside of the bus. We use the Android smartphone as a client system, which inherently equipped with GPS and mobile communication function. GPS detects the location of bus and reports its geo-location data to the traffic information center server via a wireless communication network. On the server side, we developed a specially designed control server, where it communicates with the other traffic information center and updates and manages the databases contents being displayed by each position. The server contains location dependent variable information and returns selected information back to the vehicle in real time. Spatial database is used to process location based data. Server system periodically receives the real time traffic information from the road information center database. And it process the information by bus location and bus line number. In this paper, we propose a mobile digital signage service and explain the system implementation of this service.

Smart SNS Map: Location-based Social Network Service Data Mapping and Visualization System (스마트 SNS 맵: 위치 정보를 기반으로 한 스마트 소셜 네트워크 서비스 데이터 맵핑 및 시각화 시스템)

  • Yoon, Jangho;Lee, Seunghun;Kim, Hyun-chul
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.428-435
    • /
    • 2016
  • Hundreds of millions of new posts and information are being uploaded and propagated everyday on Online Social Networks(OSN) like Twitter, Facebook, or Instagram. This paper proposes and implements a GPS-location based SNS data mapping, analysis, and visualization system, called Smart SNS Map, which collects SNS data from Twitter and Instagram using hundreds of PlanetLab nodes distributed across the globe. Like no other previous systems, our system uniquely supports a variety of functions, including GPS-location based mapping of collected tweets and Instagram photos, keyword-based tweet or photo searching, real-time heat-map visualization of tweets and instagram photos, sentiment analysis, word cloud visualization, etc. Overall, a system like this, admittedly still in a prototype phase though, is expected to serve a role as a sort of social weather station sooner or later, which will help people understand what are happening around the SNS users, systems, society, and how they feel about them, as well as how they change over time and/or space.

Design and Implementation of Fault Recorder for Transmission Line Protection (송전선로 보호용 고장기록장치의 설계 및 구현)

  • Choi, Soon-Choul;Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.46-52
    • /
    • 2016
  • When a fault occurs on a transmission line, it is important to identify the fault location as speedily as possible for improvement of the power supply reliability. Generally, distance to fault location is estimated by off line from the recorded data. Conventional fault recorder uses the fault data at one end. This paper deals with the design of an advanced fault recorder for enhancement accuracy of the fault distance estimation and fast detection a fault occurrence position. The major emphasis of the paper will be on the description of the hardware and software of the fault recorder. The fault locator algorithm utilizes a GPS time-synchronized the fault data at both ends. The fault data is transmitted to the other side substation through communication. The advanced fault locator includes a Power module, MPU(Main Processing Unit) module, ADPU(Analog Digital Processing Unit) module, and SIU(Signal Interface Unit) modules. The MMI firmware and software of an advanced fault recording device was implemented.

Temporal Pattern Mining of Moving Objects for Location based Services (위치 기반 서비스를 위한 이동 객체의 시간 패턴 탐사 기법)

  • Lee, Jun-Uk;Baek, Ok-Hyeon;Ryu, Geun-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2002
  • LBS(Location Based Services) provide the location-based information to its mobile users. The primary functionality of these services is to provide useful information to its users at a minimum cost of resources. The functionality can be implemented through data mining techniques. However, conventional data mining researches have not been considered spatial and temporal aspects of data simultaneously. Therefore, these techniques are inappropriate to apply on the objects of LBS, which change spatial attributes over time. In this paper, we propose a new data mining technique for identifying the temporal patterns from the series of the locations of moving objects that have both temporal and spatial dimension. We use a spatial operation of contains to generalize the location of moving point and apply time constraints between the locations of a moving object to make a valid moving sequence. Finally, the spatio-temporal technique proposed in this paper is very practical approach in not only providing more useful knowledge to LBS, but also improving the quality of the services.

Learning data preprocessing technique for improving indoor positioning performance based on machine learning (기계학습 기반의 실내 측위 성능 향상을 위한 학습 데이터 전처리 기법)

  • Kim, Dae-Jin;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1528-1533
    • /
    • 2020
  • Recently, indoor location recognition technology using Wi-Fi fingerprints has been applied and operated in various industrial fields and public services. Along with the interest in machine learning technology, location recognition technology based on machine learning using wireless signal data around a terminal is rapidly developing. At this time, in the process of collecting radio signal data required for machine learning, the accuracy of location recognition is lowered due to distorted or unsuitable data for learning. In addition, when location recognition is performed based on data collected at a specific location, a problem occurs in location recognition at surrounding locations that are not included in the learning. In this paper, we propose a learning data preprocessing technique to obtain an improved position recognition result through the preprocessing of the collected learning data.

Intelligent Vehicle Management Using Location-Based Control with Dispatching and Geographic Information

  • Kim Dong-Ho;Kim Jin-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.249-252
    • /
    • 2004
  • The automatic determination of vehicle operation status as well as continuous tracking of vehicle location with intelligent management is one of major elements to achieve the goals. Especially, vehicle operation status can only be analyzed in terms of expert experiences with real-time location data with scheduling information. However the scheduling information of individual vehicle is very difficult to be interpreted immediately because there are hundreds of thousand vehicles are run at the same time in the national wide range workplace. In this paper, we propose the location-based knowledge management system(LKMs) using the active trajectory analysis method with routing and scheduling information to cope with the problems. This system uses an inference technology with dispatching and geographic information to generate the logistics knowledge that can be furnished to the manager in the central vehicle monitoring and controlling center.

  • PDF