• Title/Summary/Keyword: Time-domain pulse

Search Result 209, Processing Time 0.022 seconds

Transmission Characteristics Analysis of Digital Pulse Signal on Tapered Microstrip Line in Time Domain (테이퍼형 마이크로 스트립 선로에서 디지털 펄스 신호의 시간 영역 전송 특성 해석)

  • Kim, Gi-Rae
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.1-6
    • /
    • 1999
  • The only transmission characteristics in frequency domain is considered when using the tapered transmission line for wide-band impedance matching in MCM and MIC designs. In this paper, the distortion of an electrical pulse with rise/fall time resulting from dispersion and reflection as it propagates along a tapered microstrip line is investigated, and the delay time and distortion rate with respect to input and load impedances are analyzed on triangular and exponential tapered lines. A dispersion model of the phase constant proposed by Kirschning-Jansen is used to meet the frequency, accuracy and microstrip parametric requirements. The triangular tapered line shows both shorter delay time and higher distortion rate than those of the exponential tapered line. Furthermore, the amplitude of signal reflected from load point is calculated in time domain.

  • PDF

Transient response of 2D functionally graded beam structure

  • Eltaher, Mohamed A.;Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.357-367
    • /
    • 2020
  • The objective of this article is investigation of dynamic response of thick multilayer functionally graded (FG) beam under generalized dynamic forces. The plane stress problem is exploited to describe the constitutive equation of thick FG beam to get realistic and accurate response. Applied dynamic forces are assumed to be sinusoidal harmonic, sinusoidal pulse or triangle in time domain and point load. Equations of motion of deep FG beam are derived based on the Hamilton principle from kinematic relations and constitutive equations of plane stress problem. The numerical finite element procedure is adopted to discretize the space domain of structure and transform partial differential equations of motion to ordinary differential equations in time domain. Numerical time integration method is used to solve the system of equations in time domain and find the time responses. Numerical parametric studies are performed to illustrate effects of force type, graduation parameter, geometrical and stacking sequence of layers on the time response of deep multilayer FG beams.

Wavelet Power Spectrum Estimation for High-resolution Terahertz Time-domain Spectroscopy

  • Kim, Young-Chan;Jin, Kyung-Hwan;Ye, Jong-Chul;Ahn, Jae-Wook;Yee, Dae-Su
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.103-108
    • /
    • 2011
  • Recently reported asynchronous-optical-sampling terahertz (THz) time-domain spectroscopy enables high-resolution spectroscopy due to a long time-delay window. However, a long-lasting tail signal following the main pulse is often measured in a time-domain waveform, resulting in spectral fluctuation above a background noise level on a high-resolution THz amplitude spectrum. Here, we adopt the wavelet power spectrum estimation technique (WPSET) to effectively remove the spectral fluctuation without sacrificing spectral features. Effectiveness of the WPSET is verified by investigating a transmission spectrum of water vapor.

Small Signal Modeling for the PWM Series Resonant Converter (PWM-SRC) (펄스-폭 변조방식의 직렬공진 컨버터의 소신호 모델링)

  • Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1441-1447
    • /
    • 1999
  • A discrete time domain modeling is presented for the pulse-width modulated series resonant converter (PWM-SRC) with a discontinuous current mode. This nonlinear system is linearized about its equilibrium state to obtain a linear discrete time model for the investigation of small signal performances such as the stability and transient response. The usefulness of this small signal model is verified through the dynamic simulation.

  • PDF

Fault Detection of Rolling Element Bearing for Low Speed Machine Using Wiener Filter and Shock Pulse Counting (위너 필터와 충격 펄스 카운팅을 이용한 저속 기계용 구름 베어링의 결함 검출)

  • Park, Sung-Taek;Weon, Jong-Il;Park, Sung Bum;Woo, Heung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1227-1236
    • /
    • 2012
  • The low speed machinery faults are usually caused by the bearing failure of the rolling elements. As the life time of the bearing is limited, the condition monitoring of bearing is very important to maintain the continuous operation without failures. A few monitoring techniques using time domain, frequency domain and fuzzy neural network vibration analysis are introduced to detect and diagnose the faults of the low speed machinery. This paper presents a method of fault detection for the rolling element bearing in the low speed machinery using the Wiener filtering and shock pulse counting techniques. Wiener filter is used for noise cancellation and it clearly makes the shock pulse emerge from the time signal with the high level of noise. The shock pulse counting is used to determine the various faults obviously from the shock signal with transient pulses not related with the bearing fault. Machine fault simulator is used for the experimental measurement in order to verify this technique is the powerful tool for the low speed machine compared with the frequency analysis. The test results show that the method proposed is very effective parameter even for the signal with high contaminated noise, speed variation and very low energy. The presented method shows the optimal tool for the condition monitoring purpose to detect the various bearing fault with high accuracy.

Recognition of Feature Points in ECG and Human Pulse using Wavelet Transform (웨이브렛 변환을 이용한 심전도와 맥파의 특징점 인식)

  • Kil Se-Kee;Shen Dong-Fan;Lee Eung-Hyuk;Min Hong-Ki;Hong Seung-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • The purpose of this paper is to recognize the feature points of ECG and human pulse -which signal shows the electric and physical characteristics of heart respectively- using wavelet transform. Wavelet transform is proper method to analyze a signal in time-frequency domain. In the process of wavelet decomposition and reconstruction of ECG and human pulse signal, we removed the noises of signal and recognized the feature points of signal using some of decomposed component of signal. We obtained the result of recognition rate that is estimated about 95.45$\%$ in case of QRS complex, 98.08$\%$ in case of S point and P point and 92.81$\%$ in case of C point. And we computed diagnosis parameters such as RRI, U-time and E-time.

Theoretical Study of Pulse Circuits with the Load Variation for Device of the High Voltage Pulse Generator (고전압 펄스 발생 장치의 관한 부하의 변화를 고려한 펄스회로의 이론적 연구)

  • Kim, Young-Ju;Bang, Sang-Seok;Lee, Chae-Han;Kim, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.106-112
    • /
    • 2016
  • The high-voltage pulse generator consists of transformers of fundamental wave and harmonic waves, and shunt capacitors. The pulse has the fundamental wave and the harmonic waves that have been as a series circuit by the transformers to make high voltage pulse. This paper shows that pulse generator circuit is analyzed by using transformer equivalent circuits with the effect of load and simulated in time domain using Matlab program. The output voltage of pulse were obtained to 2.5kHz, 2.0kV. In high voltage circuit, capacitors are related to frequency band pass characteristics. Also, it is shown that the voltage of output pulse increases according to the growth of load.

Study on the Radial Pulse Wave Variables and Heart Rate Variability after Acupuncture Stimulation (침자극이 좌관맥상과 심박수 미세변화에 미치는 영향)

  • Won, Jae-Kyun;Jung, Soon-Kwan;Kim, Dong-Eun;Lim, Jin-Young;Kwon, Young-Dal;Yeom, Seung-Ryong;Lee, Su-Kyung;Song, Yung-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.237-244
    • /
    • 2009
  • We investigated the effects of acupuncture stimulation on pulse wave variables and heart rate variability (HRV) in healthy adults. To evaluate twenty healthy volunteers (10 men, 10 women) had acupuncture into both Hapkok (Ll4) and Taechung (Liv3) for 15 minutes. Radial pulse, Heart Rate Variability, body temperature and blood pressure were checked before and after acupuncture to evaluate Pulse Wave Variability and Autonomous Function. The results were as follows; Heart rate was significantly increased while systolic blood pressure (mmHg) and diastolic blood pressure (mmHg) were significantly increased after acupuncture treatment. Sixteen subjects didn't change representative pulse wave variables after acupuncture treatment. Energy, height of main peak (H1), height of pre-dicrotic valley (H2) and height of descending valley (H4) were decreased while height of dicrotic peak (H5) was significantly decreased after acupuncture treatment. Time to main peak (T1), time to pre-dicrotic valley (T2), time to dicrotic peak (T5), total time (T) and T-T4 were decreased while time to descending valley (T4) was increased after acupuncture treatment. Total area (At), area of main peak (Aw) and ratio of diastolic period area (Ad) were decreased while ratio of systolic period area (As) and angle of main peak (MPA) were increased after acupuncture treatment. The standard deviation of all normal RR intervals (SDNN) was increased while the root mean square of successive differences between the normal heart beats (RMSSD) was significantly increased after acupuncture treatment by time domain analysis. Low frequency power (LF) and LF/HF ratio were decreased while high frequency power (HF) was significantly increased after acupuncture treatment by frequency domain analysis. This study suggests that acupuncture treatment changes pulse wave variability and heart rate variability. Further study on various acupuncture treatment for pulse wave variability and heart rate variability is required.

Design of UWB Tapered Slot Antenna for the Optimum Impulse Radio Transmitting & Receiving (최적 임펄스 전송을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.553-563
    • /
    • 2010
  • This paper presents a tapered slot-antenna(TSA) for optimal impulse-signal transmission in ultra-wide band(UWB). The proposed TSA provides radiates in end-fire direction, which meets an impulse-radio UWB(IR-UWB) system demands(e.g., low loss, thus less error throughout the UWB band). In order to minimize the pulse distortion, we used an wideband impedance transformer and a microstrip slotline. The pulse fidelity characteristics was evaluated with finite-difference time-domain(FDTD) analysis technique and pulse fidelity correlation equation. Approximately 93.89 % pulse fidelity was obtained between the two antennas in 0.5 m range. Additionally, derived chirp Z-transform algorithm enables us to utilize the zoom-in option on the pulse signal in few nano-seconds below. Thus, it is possible to analyze the pulse signal distortion, delay or dispersion characteristics.

Analysis of Shielded Twisted Pair Cable to External Field Coupling by Expanded Chain Matrix Modeling

  • Cho, Yong-Sun;Jung, Hyun-Kyo;Cheon, Changyul;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2049-2057
    • /
    • 2014
  • In this paper, a numerical method for analyzing coupling between high-altitude electromagnetic pulse (HEMP) as external field and a shielded twisted pair (STP) cable is proposed, which is based on an expanded chain matrix. Load responses of electromagnetic (EM) field excitation in uniform transmission line (TL) are solved by Baum-Liu-Tesche (BLT) equations in frequency domain, however, it is difficult to apply BLT equations to solve load responses of STP cable because the iteratively changing configuration of each twisted pairs are involved in cable. To avoid this problem and decrease memory and CPU time, we proposed the expanded chain matrix modeling method that is calculated using ABCD parameters, and applied multi-conductor transmission line (MTL) theory to consider the EMP coupling effectiveness of each twisted pairs. The results implemented by the proposed method are presented and compared with those obtained by the finite-difference time domain (FDTD) method as a kind of 3D full wave analysis.