• Title/Summary/Keyword: Time-delay neural network

Search Result 127, Processing Time 0.03 seconds

Incipient Fault Detection of Reactive Ion Etching Process

  • Hong, Sang-Jeen;Park, Jae-Hyun;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권6호
    • /
    • pp.262-271
    • /
    • 2005
  • In order to achieve timely and accurate fault detection of plasma etching process, neural network based time series modeling has been applied to reactive ion etching (RIE) using two different in-situ plasma-monitoring sensors called optical emission spectroscopy (OES) and residual gas analyzer (RGA). Four different subsystems of RIE (such as RF power, chamber pressure, and two gas flows) were considered as potential sources of fault, and multiple degrees of faults were tested. OES and RGA data were simultaneously collected while the etching of benzocyclobutene (BCB) in a $SF_6/O_2$ plasma was taking place. To simulate established TSNNs as incipient fault detectors, each TSNN was trained to learn the parameters at t, t+T, ... , and t+4T. This prediction scheme could effectively compensate run-time-delay (RTD) caused by data preprocessing and computation. Satisfying results are presented in this paper, and it turned out that OES is more sensitive to RF power and RGA is to chamber pressure and gas flows. Therefore, the combination of these two sensors is recommended for better fault detection, and they show a potential to the applications of not only incipient fault detection but also incipient real-time diagnosis.

음성의 특징벡터를 사용한 정규화 인식수법 (Normalized Recognition Method using Characteristic Vector of Speech Signal)

  • 최재승
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.616-618
    • /
    • 2011
  • 본 논문에서는 음성의 특징벡터를 추출하여 음성인식을 위한 인식 알고리즘을 제안한다. 본 논문에서 제안하는 방법은 사람의 음성을 정규화하여 시간지연신경회로망을 사용하여 음성인식을 하는 인식 알고리즘이다. 본 논문에서는 시간지연신경회로망을 이용하여 입력되는 음성정보를 일정시간 동안 학습시킨 후에 새로이 입력되는 정보를 인식하는 수법이다. 본 실험에서는 음성인식률에 의하여 본 알고리즘의 유효성을 확인한다.

  • PDF

분산 시간지연 회귀신경망을 이용한 피치 악센트 자동 인식 (Automatic Recognition of Pitch Accent Using Distributed Time-Delay Recursive Neural Network)

  • 김성석
    • 한국음향학회지
    • /
    • 제25권6호
    • /
    • pp.277-281
    • /
    • 2006
  • 본 논문에서는 시간지연 회귀신경회로망을 이용한 음절 레벨에서의 피치 악센트 자동 인식 방법을 제안한다. 시간지연 회귀 신경회로망은 두 종류의 동적 문맥정보를 표현한다. 시간지연 회귀신경회로망의 시간지연 입력 노드는 시간 축 상의 피치 및 에너지 궤도를 표현하고, 회귀 노드는 피치 악센트의 특성을 반영하는 문맥 정보를 표현한다. 본 논문에서는 이러한 시간지연 회귀신경회로망을 두 가지 형태로 구성하여 피치 악센트 자동 인식에 적용한다. 하나의 형태는 단일 시간지연 회귀 신경회로망에서 복수 개의 운율 특정파라미터 (피치, 에너지, 지속시간)를 입력 노드에 함께 공급하여 피치 악센트 인식을 수행하고, 다른 하나는 분산 시간지연 회귀 신경회로망을 이용하여 피치 악센트 인식을 수행한다. 분산 시간지연 회귀 신경회로망은 여러 개의 시간지연 회귀 신경회로망으로 구성되고, 각 시간지연 회귀 신경회로망은 단일 운율 특징 파라미터만으로 학습된다. 분산 시간지연 회귀 신경회로망의 인식결과는 개별 시간지연 회귀 신경회로망의 출력 값의 가중치 합으로 결정된다. 화자 독립 피치 악센트 인식 실험을 위해 보스톤 라디오 뉴스 코퍼스 (BRNC)를 사용하였다. 실험결과, 분산 시간지연 회귀 신경회로망은 83.64%의 피치 악센트 인식률을 보였다.

인공신경망을 활용한 V2I2V 통신 기반 차량 추돌방지 지원 서비스 개발 (Development of V2I2V Communication-based Collision Prevention Support Service Using Artificial Neural Network)

  • 탁세현;강경표;이동훈
    • 한국ITS학회 논문지
    • /
    • 제18권5호
    • /
    • pp.126-141
    • /
    • 2019
  • 차세대첨단교통시스템(C-ITS)의 우선 도입 서비스 항목 중 하나로 차량 추돌방지 지원 서비스가 고려되고 있다. 이에 인공신경망을 적용한 V2I2V 통신 기반의 후미추돌사고 예방 방법들이 몇몇 제시되었지만, 낮은 C-ITS 단말기 보급률 및 대용량 교통정보로 인한 지연 현상 등 한계로 인해 그 효과가 미미하다. 따라서 본 연구는 실시간 구간교통 정보를 활용한 인공신경망 기반 추돌 경고 서비스(ACWS, Artificial Neural Network-based Collision Warning Service)를 제안한다. 제안 서비스는 실시간 구간 교통정보를 반영해 인공신경망의 가중치를 갱신하고 구간 진입 차량에게 제공한다. 본 연구는 C-ITS 단말 보급률과 지연시간에 따른 제안 서비스의 성능 평가를 수행한다. 분석결과 C-ITS 단말 보급률이 높고 지연시간이 낮을수록 제안 서비스가 더 나은 성능을 나타내고, 같은 조건일 경우 고도화된 인공신경망을 적용한 서비스 성능이 더 뛰어난 것으로 확인된다.

Estimation of Brain Connectivity during Motor Imagery Tasks using Noise-Assisted Multivariate Empirical Mode Decomposition

  • Lee, Ki-Baek;Kim, Ko Keun;Song, Jaeseung;Ryu, Jiwoo;Kim, Youngjoo;Park, Cheolsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1812-1824
    • /
    • 2016
  • The neural dynamics underlying the causal network during motor planning or imagery in the human brain are not well understood. The lack of signal processing tools suitable for the analysis of nonlinear and nonstationary electroencephalographic (EEG) hinders such analyses. In this study, noise-assisted multivariate empirical mode decomposition (NA-MEMD) is used to estimate the causal inference in the frequency domain, i.e., partial directed coherence (PDC). Natural and intrinsic oscillations corresponding to the motor imagery tasks can be extracted due to the data-driven approach of NA-MEMD, which does not employ predefined basis functions. Simulations based on synthetic data with a time delay between two signals demonstrated that NA-MEMD was the optimal method for estimating the delay between two signals. Furthermore, classification analysis of the motor imagery responses of 29 subjects revealed that NA-MEMD is a prerequisite process for estimating the causal network across multichannel EEG data during mental tasks.

FPGA상에서 스파이킹 뉴럴 네트워크 지원을 위한 모델 최적화 (Model Optimization for Supporting Spiking Neural Networks on FPGA Hardware)

  • 김서연;윤영선;홍지만;김봉재;이건명;정진만
    • 스마트미디어저널
    • /
    • 제11권2호
    • /
    • pp.70-76
    • /
    • 2022
  • 클라우드 서버를 이용한 IoT 응용 개발은 네트워크로 연결된 하드웨어에 데이터 송수신 지연, 네트워크 트래픽, 실시간 처리 지원을 위한 비용 등의 문제가 발생한다. 엣지 클라우드 기반 플랫폼에서는 이러한 문제를 해결하기 위해 빠른 데이터 전달이 가능하도록 뉴로모픽 하드웨어를 사용할 수 있다. 본 논문에서는 FPGA상에서 스파이킹 뉴럴 네트워크를 위한 모델 최적화 기법을 제안한다. 뉴로모픽 하드웨어에 최적화된 네트워크 모델 파라미터를 자동 조정하는 것에 초점을 맞추었다. 정확도에 대한 사용자 요구사항을 기반으로 더 높은 성능을 보이도록 최적화를 수행한다. 성능 분석 결과, 기존의 오픈 프레임워크에서 지원하는 고정 기법과 달리 사용자의 요구사항을 모두 만족하였으며 수행시간 측면에서 더 높은 성능을 보였다.

잉여수계를 이용한 역전파 신경회로망 구현 (The Implementation of Back Propagation Neural Network using the Residue Number System)

  • 홍봉화;이호선
    • 정보학연구
    • /
    • 제2권2호
    • /
    • pp.145-161
    • /
    • 1999
  • 본 논문에서는 캐리 전파가 없어 고속연산이 가능한 잉여 수 체계를 이용하여 고속으로 동작할 수 있는 역전파 신경회로망을 설계방법을 제안하였다. 설계된 신경회로망은 잉여수계를 이용한 MAC 연산기와 혼합계수 변환을 이용한 시그모이드 함수 연산 부로 구성되며, 설계된 회로는 VHDL로 기술하였고 Compass 툴로 합성하였다. 실험결과, 가장 나쁜 경로일 경우, 약 19nsec의 지연속도를 보였고, 기존의 실수 연산기에 비하여 약 40%정도 하드웨어 크기를 줄일 수 있었다. 본 논문에서 설계한 신경회로망은 실시간 처리를 요하는 병렬분산처리 시스템에 적용될 수 있을 것으로 기대된다.

  • PDF

광대역 잡음제거를 위한 신경망 적응잡음제거기 설계 (Design of a neural network based adaptive noise canceler for broadband noise rejection)

  • 곽우혁;최한고
    • 융합신호처리학회논문지
    • /
    • 제3권2호
    • /
    • pp.30-36
    • /
    • 2002
  • 본 논문에서는 선형적응필터를 사용하고 있는 기존의 적응잡음제거 기 의 단점을 보완하기 위해 신경망 적응필터를 이용한 비선형 적응잡음제거기를 다루고 있다. 제안된 적응잡음제거기는 광대역 시변 잡음신호를 사용하여 잡음제거 성능을 조사하였으며 상대평가를 위해 TDL (tapped-delay -line) 선형필터의 적응잡음제거기와 비교하였다. 실험결과에 의하면 적응잡음 제거기의 주입력에 포함된 잡음과 기준입력 사이에 비선형적인 상관관계가 존재하는 경우 신경망 적응잡음제거기는 평균자승오차값을 기준으로 선형잡음제거기보다 더 우수한 성능을 보여주었으며, 또한 리커런트 신경망 적응필터가 순방향 신경망 필터보다 성능이 우수하였다. 따라서 적응잡음제거기에서 광대역 시변잡음을 제거하는데 신경망 적응필터가 선형 적응필터보다 효과적임을 확인하였다.

  • PDF

Learning Algorithms in AI System and Services

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1029-1035
    • /
    • 2019
  • In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.

A Real-Time Pattern Recognition for Multifunction Myoelectric Hand Control

  • Chu, Jun-Uk;Moon, In-Hyuk;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.842-847
    • /
    • 2005
  • This paper proposes a novel real-time EMG pattern recognition for the control of a multifunction myoelectric hand from four channel EMG signals. To cope with the nonstationary signal property of the EMG, features are extracted by wavelet packet transform. For dimensionality reduction and nonlinear mapping of the features, we also propose a linear-nonlinear feature projection composed of PCA and SOFM. The dimensionality reduction by PCA simplifies the structure of the classifier, and reduces processing time for the pattern recognition. The nonlinear mapping by SOFM transforms the PCA-reduced features to a new feature space with high class separability. Finally a multilayer neural network is employed as the pattern classifier. We implement a real-time control system for a multifunction virtual hand. From experimental results, we show that all processes, including virtual hand control, are completed within 125 msec, and the proposed method is applicable to real-time myoelectric hand control without an operation time delay.

  • PDF