• Title/Summary/Keyword: Time-corrected channel

Search Result 16, Processing Time 0.024 seconds

A New Compressive Feedback Scheme Based on Distributed Compressed Sensing for Time-Correlated MIMO Channel

  • Li, Yongjie;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.580-592
    • /
    • 2012
  • In this paper, a new compressive feedback (CF) scheme based on distributed compressed sensing (DCS) for time-corrected MIMO channel is proposed. First, the channel state information (CSI) is approximated by using a subspace matrix, then, the approximated CSI is compressed using a compressive matrix. At the base station, the approximated CSI can be robust recovered with simultaneous orthogonal matching pursuit (SOMP) algorithm by using forgone CSIs. Simulation results show our proposed DCS-CF method can improve the reliability of system without creating a large performance loss.

Hardware Channel Decoder for Holographic WORM Storage (홀로그래픽 WORM의 하드웨어 채널 디코더)

  • Hwang, Eui-Seok;Yoon, Pil-Sang;Kim, Hak-Sun;Park, Joo-Youn
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • In this paper, the channel decoder promising reliable data retrieving in noisy holographic channel has been developed for holographic WORM(write once read many) system. It covers various DSP(digital signal processing) blocks, such as align mark detector, adaptive channel equalizer, modulation decoder and ECC(error correction code) decoder. The specific schemes of DSP are designed to reduce the effect of noises in holographic WORM(H-WORM) system, particularly in prototype of DAEWOO electronics(DEPROTO). For real time data retrieving, the channel decoder is redesigned for FPGA(field programmable gate array) based hardware, where DSP blocks calculate in parallel sense with memory buffers between blocks and controllers for driving peripherals of FPGA. As an input source of the experiments, MPEG2 TS(transport stream) data was used and recorded to DEPROTO system. During retrieving, the CCD(charge coupled device), capturing device of DEPROTO, detects retrieved images and transmits signals of them to the FPGA of hardware channel decoder. Finally, the output data stream of the channel decoder was transferred to the MPEG decoding board for monitoring video signals. The experimental results showed the error corrected BER(bit error rate) of less than $10^{-9}$, from the raw BER of DEPROTO, about $10^{-3}$. With the developed hardware channel decoder, the real-time video demonstration was possible during the experiments. The operating clock of the FPGA was 60 MHz, of which speed was capable of decoding up to 120 mega channel bits per sec.

  • PDF

An Improved Channel Codes for the Noise Immunity of Satellite Communication Systems (위성통신에서의 잡음 면역성 향상을 위한 코드의 개선)

  • 홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.3
    • /
    • pp.147-152
    • /
    • 1985
  • The error-trapping decoder is constructed for the (7, 3) Reed-Solomon code. The syndrome resister is constructed with the encoder and the substanial test logic circuits. The element of GF(8) is represented by the triple D-flip-floops. The hardware is constructed. And it is controlled by the micro computer(Apple II). The time for the encoding and the decoding were $350\musecs and 910u secs respectively. The experimental results show that the two symbol errors were corrected and 4-bit-binary-burst errors were also corrected.

  • PDF

Adaptive White Point Extraction based on Dark Channel Prior for Automatic White Balance

  • Jo, Jieun;Im, Jaehyun;Jang, Jinbeum;Yoo, Yoonjong;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • This paper presents a novel automatic white balance (AWB) algorithm for consumer imaging devices. While existing AWB methods require reference white patches to correct color, the proposed method performs the AWB function using only an input image in two steps: i) white point detection, and ii) color constancy gain computation. Based on the dark channel prior assumption, a white point or region can be accurately extracted, because the intensity of a sufficiently bright achromatic region is higher than that of other regions in all color channels. In order to finally correct the color, the proposed method computes color constancy gain values based on the Y component in the XYZ color space. Experimental results show that the proposed method gives better color-corrected images than recent existing methods. Moreover, the proposed method is suitable for real-time implementation, since it does not need a frame memory for iterative optimization. As a result, it can be applied to various consumer imaging devices, including mobile phone cameras, compact digital cameras, and computational cameras with coded color.

Tracking of SFH/MFSK Signal in HF Channel (HF 채널에서의 SFH/MFSK 신호의 시간 추적)

  • 최세열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.442-450
    • /
    • 1994
  • In this paper, the tracking of SFH/MFSK signals by using a paeallel correlator and a bank of BPF which is implemented by DFT recursively is studied. During symbol period, M-ary signal`s spectrum is analyzed by the step of n multiple of sampling period. The bank of BPF output which is stored for hop duration input to the parallel correlator. The time difference of the receiver and the transmitter is corrected by using sampling position and correlation time at which the largest output of correlator is generated. Syncronization signal detection rate and distribution of the largest output of correlator are evaluated by computer simulation in HF channel evironments for the performance analysis of proposed tracking method.

  • PDF

Information Coding Schemes for the Frequency Hopping Communication (주파수 도약 통신에 적합한 정보부호화 기법)

  • 박대철;김용선;한성우;전용억;전병민
    • Journal of Broadcast Engineering
    • /
    • v.4 no.1
    • /
    • pp.32-43
    • /
    • 1999
  • This paper addresses schemes which securely transmit voice and data information under the worst communication environment using the frequency hopping(FH) communication system to avoid monitoring or interference against enemy. In case of using the conventional FEC and bit interleaving scheme. the processing time for error control coding and bit interleaving due to system complexity is highly demanded. In this paper. the effective information coding scheme of maprity error correction and block interleaving compatible to the proposed FH communication system is proposed to transmit voice or data (I6Kbps. 4.8Kbps. 2.4Kbps. 1.2Kbps, O.6Kbps) under the worst FH communication channel. In transmitter. low rate data signals are configured to majority data blocks. and transmitted repeatedly to FH channel which are structured to 20Kbps hopping frame cells. In receiver. the received data are decoded block by block, and taken majority error correction. Consequently. burst or random errors are corrected at the block deinterleaver and the majority decoder. The proposed coder structure reduces the coding/decnding processing time as well as the jamming interferences, and further simplify the data processing complexity for FH communication. Improved performance of the proposed scheme was verified under simulated channel environments.

  • PDF

Generalized SCAN Bit-Flipping Decoding Algorithm for Polar Code

  • Lou Chen;Guo Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1296-1309
    • /
    • 2023
  • In this paper, based on the soft cancellation (SCAN) bit-flipping (SCAN-BF) algorithm, a generalized SCAN bit-flipping (GSCAN-BF-Ω) decoding algorithm is carried out, where Ω represents the number of bits flipped or corrected at the same time. GSCAN-BF-Ω algorithm corrects the prior information of the code bits and flips the prior information of the unreliable information bits simultaneously to improve the block error rate (BLER) performance. Then, a joint threshold scheme for the GSCAN-BF-2 decoding algorithm is proposed to reduce the average decoding complexity by considering both the bit channel quality and the reliability of the coded bits. Simulation results show that the GSCAN-BF-Ω decoding algorithm reduces the average decoding latency while getting performance gains compared to the common multiple SCAN bit-flipping decoding algorithm. And the GSCAN-BF-2 decoding algorithm with the joint threshold reduces the average decoding latency further by approximately 50% with only a slight performance loss compared to the GSCAN-BF-2 decoding algorithm.

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness (수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석)

  • In-Seong Hwang;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.491-499
    • /
    • 2023
  • Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Lee, Tae-Yoon;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.297-309
    • /
    • 2007
  • The first Korean geostationary weather satellite, Communications, Oceanography and Meteorology Satellite (COMS) will be launched in 2008. The ground station for COMS needs to perform geometric correction to improve accuracy of satellite image data and to broadcast geometrically corrected images to users within 30 minutes after image acquisition. For such a requirement, we developed automated and fast geometric correction techniques. For this, we generated control points automatically by matching images against coastline data and by applying a robust estimation called RANSAC. We used GSHHS (Global Self-consistent Hierarchical High-resolution Shoreline) shoreline database to construct 211 landmark chips. We detected clouds within the images and applied matching to cloud-free sub images. When matching visible channels, we selected sub images located in day-time. We tested the algorithm with GOES-9 images. Control points were generated by matching channel 1 and channel 2 images of GOES against the 211 landmark chips. The RANSAC correctly removed outliers from being selected as control points. The accuracy of sensor models established using the automated control points were in the range of $1{\sim}2$ pixels. Geometric correction was performed and the performance was visually inspected by projecting coastline onto the geometrically corrected images. The total processing time for matching, RANSAC and geometric correction was around 4 minutes.

Velocity Model Building using Waveform Inversion from Single Channel Engineering Seismic Survey (탄성파 파형역산을 이용한 엔지니어링 목적의 단일채널 탄성파 탐사자료에서의 속도모델 도출)

  • Choi, Yeon Jin;Shin, Sung Ryul;Ha, Ji Ho;Chung, Woo Keen;Kim, Won Sik
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.231-241
    • /
    • 2014
  • Recently, single channel seismic survey for engineering purpose have been used widely taking advantage of simple processing. However it is very difficult to obtain high fidelity subsurface image by single channel seismic due to insufficient fold coverage. Recently, seismic waveform inversion in multi channel seismic survey is utilized for accurate subsurface imaging even in complex terrains. In this paper, we propose the seismic waveform inversion algorithm for velocity model building using a single channel seismic data. We utilize the Gauss-Newton method and assume that subsurface model is 1-Dimensional. Seismic source estimation technique is used and offset effect is also corrected by removing delay time by offset. Proposed algorithm is verified by applying modified Marmousi2 model, and applied to field data set obtained in port of Busan.