• Title/Summary/Keyword: Time-Varying System

Search Result 1,471, Processing Time 0.024 seconds

Effect of AC Electric Fields on Flow Instability in Laminar Jets (층류제트유동 불안정성에 미치는 교류 전기장 효과)

  • Kim, Gyeong Taek;Lee, Won June;Cha, Min Suk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong;Kim, Min Kuk;Lee, Sang Min
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The effect of applied electric fields on jet flow instability was investigated experimentally by varying the direct current (DC) voltage and the alternating current (AC) frequency and voltage applied to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configuration, which occur when AC electric fields are applied. The results indicate that a twin-lifted jet flames originates from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as $O_2+e{\rightarrow}O_2{^-}$ when AC electric fields are applied. This was confirmed by experiments in which a variety of gaseous jets were ejected from a nozzle to which DC voltages and AC frequencies and voltages were applied, with ambient air between two deflection plates connected to a DC power source. Experiments in which jet flows of several gases were ejected from a nozzle and AC electric fields were applied in coflow-nitrogen provided further evidence. The flow instability occurred only for oxygen and air jets. Additionally, jet instability occurred when the applied frequency was less than 80 Hz, corresponding to the characteristic collision response time. The effect of AC electric fields on the overall structure of the jet flows is also reported. Based on these results, we propose a mechanism to reduce jet flow instability when AC electric fields are applied to the nozzle.

Development of relational river data model based on river network for multi-dimensional river information system (다차원 하천정보체계 구축을 위한 하천네트워크 기반 관계형 하천 데이터 모델 개발)

  • Choi, Seungsoo;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.335-346
    • /
    • 2018
  • A vast amount of riverine spatial dataset have recently become available, which include hydrodynamic and morphological survey data by advanced instrumentations such as ADCP (Acoustic Doppler Current Profiler), transect measurements obtained through building various river basic plans, riverine environmental and ecological data, optical images using UAVs, river facilities like multi-purposed weir and hydrophilic sectors. In this regard, a standardized data model has been subsequently required in order to efficiently store, manage, and share riverine spatial dataset. Given that riverine spatial dataset such as river facility, transect measurement, time-varying observed data should be synthetically managed along specified river network, conventional data model showed a tendency to maintain them individually in a form of separate layer corresponding to each theme, which can miss their spatial relationship, thereby resulting in inefficiency to derive synthetic information. Moreover, the data model had to be significantly modified to ingest newly produced data and hampered efficient searches for specific conditions. To avoid such drawbacks for layer-based data model, this research proposed a relational data model in conjunction with river network which could be a backbone to relate additional spatial dataset such as flowline, river facility, transect measurement and surveyed dataset. The new data model contains flexibility to minimize changes of its structure when it deals with any multi-dimensional river data, and assigned reach code for multiple river segments delineated from a river. To realize the newly developed data model, Seom river was applied, where geographic informations related with national and local rivers are available.

Atmospheric Turbulence Simulator for Adaptive Optics Evaluation on an Optical Test Bench

  • Lee, Jun Ho;Shin, Sunmy;Park, Gyu Nam;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However, this type of prediction based on various assumptions can occasionally produce outcomes which are far from actual experience. Thus, every adaptive optics system is desired to be tested in a closed loop on an optical test bench before its application to a telescope. In the close-loop test bench, we need an atmospheric simulator that simulates atmospheric disturbances, mostly in phase, in terms of spatial and temporal behavior. We report the development of an atmospheric turbulence simulator consisting of two point sources, a commercially available deformable mirror with a $12{\times}12$ actuator array, and two random phase plates. The simulator generates an atmospherically distorted single or binary star with varying stellar magnitudes and angular separations. We conduct a simulation of a binary star by optically combining two point sources mounted on independent precision stages. The light intensity of each source (an LED with a pin hole) is adjustable to the corresponding stellar magnitude, while its angular separation is precisely adjusted by moving the corresponding stage. First, the atmospheric phase disturbance at a single instance, i.e., a phase screen, is generated via a computer simulation based on the thin-layer Kolmogorov atmospheric model and its temporal evolution is predicted based on the frozen flow hypothesis. The deformable mirror is then continuously best-fitted to the time-sequenced phase screens based on the least square method. Similarly, we also implement another simulation by rotating two random phase plates which were manufactured to have atmospheric-disturbance-like residual aberrations. This later method is limited in its ability to simulate atmospheric disturbances, but it is easy and inexpensive to implement. With these two methods, individually or in unison, we can simulate typical atmospheric disturbances observed at the Bohyun Observatory in South Korea, which corresponds to an area from 7 to 15 cm with regard to the Fried parameter at a telescope pupil plane of 500 nm.

Wavelength Interrogation Technique for Bragg Reflecting Strain Sensors Based on Arrayed Waveguide Grating (도파로 어레이 격자를 이용한 광섬유 브래그 스트레인 센서의 반사파장 신호 복원 기술)

  • Seo, Jun-Kyu;Kim, Kyung-Jo;Oh, Min-Cheol;Lee, Sang-Min;Kim, Young-Jae;Kim, Myung-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • Fiber-optic strain sensors based on Bragg reflection gratings produce the change of reflection spectrum when an external stress is applied on the sensor. To measure the Bragg reflection wavelength in high speed, an arrayed waveguide grating device is incorporated in this work. By monitoring the output power from each channel of the AWG, the peak wavelength corresponding to the applied strain could be obtained. To enhance the accuracy of the AWG wavelength interrogation system, a chirped fiber Bragg grating with a 3-dB bandwith of 5.4 nm is utilized. The high-speed response of the proposed system is demonstrated by measuring a fast varying strain produced by the damped oscillation of a cantilever. An oscillation frequency of 17.8 Hz and a damping time constant of 0.96 second are obtained in this measurement.

Childcare Policies In Korea (우리나라의 보육정책)

  • Park, Kyung Ja;Hwang, Ock Kyeung;Moon, Hyuk Jun
    • Korean Journal of Childcare and Education
    • /
    • v.9 no.5
    • /
    • pp.513-538
    • /
    • 2013
  • As a childcare program of TaeHwa Christian Women's Institution in 1921, the childcare system in Korea was incepted. Since then, the political foothold of childcare system has steadily been advancing to provide high quality services to young children. In almost a hundred-year-history of public childcare in Korea, depending on the changes enforced on the related laws and regulations and varying perspectives over time, the administration office accountable for childcare policies has been authorized to the Ministries of Health, Social Affairs, Education, Labor, Home Affairs, Rural Development Administration, and/or others. But as of 1991, under the enactment of Infant and Child Care Act, it was changed to be administered by the unified authority of the Health and Social Welfare Ministry. Then, in 2004 and 2007, its statutory authority, respectively, transferred to the Ministry of Gender Equality and Family and back to the Ministry of Health and Social Welfare. Staring of the Infant and Child Care Act in 1991, Korean childcare policies have been managed by the dual systems of the Education Ministry and the Health and Social Welfare Ministry each holding jurisdiction over kindergartens and childcare centers, respectively. Faced with the recent marked decline of birth rate, diverse childcare policies are currently implemented in the pursuit of finding means to enhance the quality of childcare and to develop policies for the restoration of the low birth rate. This study presented distinct features of current childcare policies and discussed about future directions and challenges of these policies.

An Experimental Study for the Design of Household-Storage Facilities (부엌 수납장 설계 기준 설정을 위한 기초적 연구)

  • 최재순
    • Journal of the Korean Home Economics Association
    • /
    • v.20 no.4
    • /
    • pp.155-168
    • /
    • 1982
  • What is attempted here is to find out an optimum method for the design of physical environments that could save human energy expenditures and safely perform household duties. There are, if any, very little amount of research done in this area. This is particulary so when the work relates to the designing of household storage facilities in the light of the energy metabolism of human body. The first step to this study, therefore, is to find out the ways by which we can determine the energy metabolism of human body accurately. To measure the volume and the concentration of human respiration continuously and automatically, a new apparatus is selected here. This includes the recording system with the Wright Respirometer and the Expired Gas Analyzer as well as the computer system to multiply volume by concentration of human respiration and to integrate them for a given time. Then, the author experimented on the reliability of this apparatus and came to the conclusion that this apparatus satisfied our need to research the energy metabolism of human body. Next, the general plan and procedures to experiment with this apparatus have been determined as follows: 1) subjects are three young and sound females. Their physical characteristics are shown in Table 1 and most approximates the standard characteristics of Japanese females, 2) height of open shelves is selected in such away as to correspond to the respective height of each subject(see Table 2), 3) utensils to be stored are box shaped object, which weight is 0.5kg, 1.0kg, 2.0kg or 3.0kg, 4) working motions are given while one or two hands as to place utensil on each shelf from the standard working board, 85 cm in height and then to place back it on the board from the shelf and repeated in constant velocity as 10 times per a minute, 5) each posture of motion is chosen by each subject in free, 6) procedures of measurement of human energy metabolism ard shown at(6), 1, Section 3 as specific methods for using this apparatus. Findings of this study are as follows: 1. Human energy expenditures for storing utensils on shelves by each subject are shown in quantity more accurately than in any other studies, under varying conditions about height of shelves, load of utensils and working motion with one hand and two hands (see Fig. 8~13 and Table 3). 2. Experimental formulae of human energy expenditure for that work are shown as formula (8), (9) and (10), to generalize results of 1. and to apply those for working motion under given conditions. 3. As results of analysis on gained data, we are able to show the standard model of human energy expenditures for storing untensils on shelves by the standard Japanese female (see Table 7 and Fig. 14).

  • PDF

The Characteristics of the Color tones on Korean Traditional Color Blue and Red (한국전통색 청$\cdot$홍의 색조 특성)

  • 이경희
    • Archives of design research
    • /
    • v.12 no.4
    • /
    • pp.317-326
    • /
    • 1999
  • The Korean traditional color passed down over countless generations has surpassed both surpassed both time and space and continue today to breathe life into its people's everyday. In order to clarify the characteristics of Korean traditional color blue and red, we investigate the names of them and measured the color tones of textile remains in Chosun era. The characteristics of Korean traditional color blue and red have been surveyed by means of the examination of color names in many famous literatures in Chosun era. Korean terms for color tones were characterized by enormous variety of epithes crowned on them. The color names mentioned contain many unaccountable epithes which were characterized also deep colors and light colors were dominant in it. As a means of enhancing possibilities within limited colors, the commoners increased the names for varying tones of blue color group(32kinds) and red color group(40kinds). These "blue(indigo dyeing)' and 'red(safflower dyeing)' in Chosun era were shown very high frequency in use and the costume colors in Royal Court. With combination of these various blue and red colors they represented a thought of color based on Yinyang Theory and created a polished aesthetic taste. The color samples of textile remains in museum were measured and designated by Munsell color system and the ISCC-NBS color designation system. THe appeared rates were derived on Chosun era and features of colors using on the period were discussed. We aim to present specific recipes in indigo dyeing and safflower dyeing for using our apparel product and folk art.

  • PDF

Feasibility of Using Norad Orbital Elements for Pass Programming and Catalog Generation for High Resolution Satellite Images (고해상도 위성영상 촬영계획 수립 및 카탈로그 생성을 위한 NORAD 궤도 데이터의 이용 가능성 연구)

  • 신동석;김탁곤;곽성희;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • At present, many ground stations all over the world are using NORAD orbit element data in order to track and communicate with Earth orbiting satellites. The North American Aerospace Defense Command (NORAD) observes thousands of Earth orbiting objects on daily basis and provides their orbital information via internet. The orbital data provided by NORAD, which is also called two line element (TLE) sets, allows ground stations to predict the time-varying positions of satellites accurately enough to communicate with the satellites. In order to complete the mission of a high resolution remote sensing satellite which requires very high positional determination and control accuracy, however, a mission control and tracking ground station is dedicated for the observation and positional determination of the satellite rather than using NORAD orbital sets. In the case of KITSAT-3, NORAD orbital elements are currently used for image acquisition planning and for the processing of acquired images due to the absence of a dedicated KITSAT-3 tracking ground system. In this paper, we tested and analyzed the accuracy of NORAD orbital elements and the appropriate prediction model to determine how accurately a satellite acquisites an image of the location of interest and how accurately a ground processing system can generate the catalog of the images.

Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model (순환신경망을 이용한 자기장 기반 실내측위시스템)

  • Bae, Han Jun;Choi, Lynn;Park, Byung Joon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.57-65
    • /
    • 2018
  • Conventional RF signal-based indoor localization techniques such as BLE or Wi-Fi based fingerprinting method show considerable localization errors even in small-scale indoor environments due to unstable received signal strength(RSS) of RF signals. Therefore, it is difficult to apply the existing RF-based fingerprinting techniques to large-scale indoor environments such as airports and department stores. In this paper, instead of RF signal we use the geomagnetic sensor signal for indoor localization, whose signal strength is more stable than RF RSS. Although similar geomagnetic field values exist in indoor space, an object movement would experience a unique sequence of the geomagnetic field signals as the movement continues. We use a deep neural network model called the recurrent neural network (RNN), which is effective in recognizing time-varying sequences of sensor data, to track the user's location and movement path. To evaluate the performance of the proposed geomagnetic field based indoor positioning system (IPS), we constructed a magnetic field map for a campus testbed of about $94m{\times}26$ dimension and trained RNN using various potential movement paths and their location data extracted from the magnetic field map. By adjusting various hyperparameters, we could achieve an average localization error of 1.20 meters in the testbed.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.