• Title/Summary/Keyword: Time-Varying System

Search Result 1,463, Processing Time 0.036 seconds

Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control (공력 및 추력을 이용한 유도탄의 혼합제어기 설계(I))

  • 이호철;최용석;최재원;송택렬;송찬호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.122-130
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories, and autopilot design using time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Control allocation of this paper is capable of extracting the maximum performance from each control effector, aerodynamic fin and thrust vectoring control, by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulation.

Sliding Mode Control of a Cargo System Model Using ER Valve-Actuators (ER 밸브 작동기를 이용한 하역시스템 모델의 슬라이딩모드 제어)

  • Choe, Seung-Bok;Kim, Hyeong-Seok;Jeong, Dal-Do;Seong, Geum-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1982-1992
    • /
    • 1999
  • This paper presents a novel concept of cargo handling system adapted for a sea port subjected to severe time-varying tide. The proposed system can perform loading or unloading by using a sort of hydraulic elevator associated with real-time position control. In order to achieve a proof-of-concept, a small-sized laboratory model of the cargo handling system is designed and built. The model consists of three principal components container palette transfer (CPT) car, platform with lifting columns, and cargo ship. The platform activated by electro-rheological (ER) valve-cylinders is actively controlled to track the position of the cargo ship subjected to be varied due to the time-varying tide and wave motion. Following the derivation of the dynamic model for the platform and cargo ship motions, an appropriate control scheme is formulated and implemented. The location of the CPT car is sensed by a set of photoelectric switches and controlled via sequence controller. On the other hand, a sliding mode controller (SMC) is adopted as the position controller for the platform. Both simulated and measured control results are presented to demonstrate the effectiveness of the proposed cargo system.

Variable structure control for matched and unmatched uncertainty with quadratic criterion

  • Rhee, Bond-Jae;Park, Ju-Hyun;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.458-463
    • /
    • 1997
  • In this paper, we propose a variable structure control approach for the system with matched and unmatched uncertainty. By using time-varying sliding mode, the reaching mode is removed, and the design methodology represents a realistic design approach with quadratic criterion for systems incorporating both matched and unmatched uncertainties. The criterion contains states and linear part of input for all time. The practical application of the control strategy is presented in the design of a stability augmentation system for an aircraft is presented.

  • PDF

Design of Robust Control for State-Delay Systems

  • Joon, Kwon-Taek;Chul, Ha-In;Chul, Han-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.6-129
    • /
    • 2001
  • In this paper, we consider a class of time-varying systems with time-varying state delay. Generally, this system is affected by many uncertainties and we assume that the information of the upper bound(time-delay, uncertainty) is known. In this work, we propose a robust control for system with state delay. The stability based on Lyapunov function is presented. Finally, a numberical example is given to demonstrate the validity of the result.

  • PDF

자기동조법에 의한 BLDC전동기의 정밀 위치제어

  • 정석권;전봉환;유휘룡;김효석;김상봉;이판묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.460-465
    • /
    • 1994
  • A high precision position control techinque of Brushless DC(BLDC) motor system with time varying parameters is expressed using the self tuning control method. The time varying parameters is estimated on real time by detecting voltage references from controller and mechanical motor speeds from tacho-generator. The effectiveness of the method is evaluated through the positon control experimental results of a BLDC motor system for reference change and arbitrary disturbance.

  • PDF

Dynamic response for electromechanical integrated toroidal drive to electric excitation

  • Xu, Lizhong;Hao, Xiuhong
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.635-650
    • /
    • 2007
  • In this paper, the equivalent exciting force caused by electric excitation is derived. By dividing load and displacement vectors into mean values and time-varying ones, the dynamic equations of the system are transformed into linear ones for time-varying portion of the displacements. The analytical equations of the forced time responses of the drive system to electric excitations are obtained. Using the Laplace transformation, the transfer function of the drive system is obtained. These equations are used to analyze the time and frequency responses of the drive system to the electric excitation. It is known that electric excitation can cause forced responses of the drive system, the total dynamic responses are decided by three phase exciting voltages, exciting frequency and natural frequencies of the drive system, and the drive parameters have obvious influence on the time and frequency responses.

Dynamic Analysis of a Gear Driving System with Time-varying Mesh Stiffness/Damping and Friction (변동물림강성/감쇠와 마찰을 고려한 기어구동계의 동특성 해석)

  • Kim, Woo-Hyung;Jung, Tae-Il;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.224-231
    • /
    • 2006
  • A six-degree-of-freedom dynamic model with time-varying mesh stiffness/damping and friction has been developed for the dynamic analysis of a gear driving system. This model includes a spur gear pair, bearing, friction and prime mover. Using Newton???s method, equations of motion for the gear driving system were derived. Two computer programs are developed to calculate mesh stiffness, transmission error and friction force and analyze the dynamics of the modeled system using a time integration method. The influences of mesh stiffness/damping, bearing, and friction affecting the system were investigated by performing eigenvalue analysis and time response analysis. It is found that the reduction of the maximum peak magnitude by friction is decided according to designing the positions of pitch point and maximum peak in the responses.

  • PDF

Mixed $H^2/H^{\infty}$ Filter Design for Linear Parameter Varying System (선형 파라마터 변이 시스템에 대한 혼합 $H^2/H^{\infty}$ 필터 설계)

  • 이갑래;윤한오
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.73-79
    • /
    • 1997
  • This paepr is concerned with the design of linear parameter varying filter that ensures H$^{2}$/$H^{\infty}$ performance for a class of linear parameter varying(LPV) plants. The state space matrices of plant are assumed to be dependent affinely on a vector of time varying parameter, and each parameter is assumed to be measured in real time. Using the linear matrix inequalities(LMIs), we can solve the synthesis problem and the solution of LMIs is carried out off-line. The designed filter is parameter varying and automatically scheduled along parameter trajectories. Because the solution of LMIs is carried out off-line, computation time of filter gain is reduced. The validity of the proposed algorithm is verifed through computer simulation..

  • PDF

TATS: an Efficient Technique for Computing Temporal Aggregates for Data Warehousing

  • Shin, Young-Ok;Park, Sung-Kong;Baik, Doo-Kwon;Ryu, Keun-Ho
    • ETRI Journal
    • /
    • v.22 no.3
    • /
    • pp.41-51
    • /
    • 2000
  • An important use of data warehousing is to provide temporal views over the history of source data. It is significant that nearly all data warehouses are dependent on relational database technology, yet relational databases provide little or no real support for temporal data. Therefore, in is difficult to obtain accurate information for time-varying data. In this paper, we are going to design a temporal data warehouse to support time-varying data efficiently. For this purpose, we present a method to support temporal query by combining a temporal query process layer with the relational database which is used as a source database in an existing data warehouse. We introduce the Temporal Aggregate Tree Strategy (TATS), and suggest its algorithm for the way to aggregate the time-varying data that is changed by the time when the temporal view is created. In addition, The TATS and the materialized view creation method of the existing data warehouse have been evaluated. As a result, the TATS reduces the size of the fact table and it shows a good performance for the comparison factor in case of processing the query for time-varying data.

  • PDF

Stability Condition for Discrete Interval System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연 시간을 갖는 이산 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.551-556
    • /
    • 2021
  • In this paper, we deal with the stability condition of linear interval discrete systems with time-varying delays and unstructured uncertainty. For the interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new results are derived by the form of simple inequality based on Lyapunov stability condition and have the advantage of being more effective in stability application. Furthermore, the proposed stable conditions are very comprehensive and powerful, including the previously published stable conditions of various linear discrete systems. The superiority of the new condition is proven in the derivation process, and the utility and superiority of the proposed condition are examined through numerical example.