• 제목/요약/키워드: Time-Series Pattern Recognition

검색결과 52건 처리시간 0.023초

카오스 특징 추출에 의한 시계열 신호의 패턴인식 (Pattern recognition of time series data based on the chaotic feature extracrtion)

  • 이호섭;공성곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.294-297
    • /
    • 1996
  • This paper proposes the method to recognize of time series data based on the chaotic feature extraction. Features extract from time series data using the chaotic time series data analysis and the pattern recognition process is using a neural network classifier. In experiment, EEG(electroencephalograph) signals are extracted features by correlation dimension and Lyapunov experiments, and these features are classified by multilayer perceptron neural networks. Proposed chaotic feature extraction enhances recognition results from chaotic time series data.

  • PDF

카오스 특징 추출에 의한 용접 결함의 초음파 형상 인식 (Ultrasonic Pattern Recognition of Welding Defects Using the Chaotic Feature Extraction)

  • 이원;윤인식;이병채
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.167-174
    • /
    • 1998
  • The ultrasonic test is recognized for its significance as a non-destructive testing method to detect volume defects such as porosity and incomplete penetration which reduce strength in the weld zone. This paper illustrates the defect detection in the weld zone of ferritic carbon steel using ultrasonic wave and the evaluation of pattern recognition by chaotic feature extraction using time series signal of detected defects as data. Shown in the time series data were that the time delay was 4 and the embedding dimension was 6 which indicate the geometric dimension of the subject system and the extent of information correlation. Based on fractal dimension and lyapunov exponent in quantitative chaotic feature extraction, feature value of 2.15, 0.47 is presented for porosity and 2.24, 0.51 for incomplete penetration The precision rate of the pattern recognition is enhanced with these values on the total waveform of defect signal in the weld zone. Therefore, we think that the ultrasonic pattern recognition method of weld zone defects of ferritic carbon steel by ultrasonic-chaotic feature extraction proposed in this paper can boost precision rate further than the existing method applying only partial waveform.

  • PDF

컨벌루션 신경망과 변종데이터를 이용한 시계열 패턴 인식 (Convolutional Neural Network and Data Mutation for Time Series Pattern Recognition)

  • 안명호;류미현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.727-730
    • /
    • 2016
  • TSC(Time Series Classification)은 시계열데이터를 패턴에 따라 분류하는 것으로, 시계열이 매우 흔한 데이터형태이고, 또한 활용도가 높기 때문에 오랜 시간동안 Data Mining 과 Machine Learning 분야의 주요한 이슈였다. 전통적인 방법에서는 Distance와 Dictionary 기반의 방법들을 많이 활용하였으나, Time Scale과 Random Noise의 문제로 인해 분류의 정확도가 제한되었다. 본 논문에서는 Deep Learning의 CNN(Convolutional Neural Network)과 변종데이터(Data Mutation)을 이용해 정확도를 향상시킨 방법을 제시한다. CNN은 이미지분야에서 이미 검증된 신경망 모델로써 시계열데이터의 특성을 나타내는 Feature를 인식하는데 효과적으로 활용할 수 있고, 변종데이터는 하나의 데이터를 다양한 방식으로 변종을 만들어 CNN이 특정 패턴의 가능한 변형에 대해서도 학습할 수 있도록 데이터를 제공한다. 제시한 방식은 기존의 방식보다 우수한 정확도를 보여준다.

  • PDF

QP-DTW: Upgrading Dynamic Time Warping to Handle Quasi Periodic Time Series Alignment

  • Boulnemour, Imen;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • 제14권4호
    • /
    • pp.851-876
    • /
    • 2018
  • Dynamic time warping (DTW) is the main algorithms for time series alignment. However, it is unsuitable for quasi-periodic time series. In the current situation, except the recently published the shape exchange algorithm (SEA) method and its derivatives, no other technique is able to handle alignment of this type of very complex time series. In this work, we propose a novel algorithm that combines the advantages of the SEA and the DTW methods. Our main contribution consists in the elevation of the DTW power of alignment from the lowest level (Class A, non-periodic time series) to the highest level (Class C, multiple-periods time series containing different number of periods each), according to the recent classification of time series alignment methods proposed by Boucheham (Int J Mach Learn Cybern, vol. 4, no. 5, pp. 537-550, 2013). The new method (quasi-periodic dynamic time warping [QP-DTW]) was compared to both SEA and DTW methods on electrocardiogram (ECG) time series, selected from the Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) public database and from the PTB Diagnostic ECG Database. Results show that the proposed algorithm is more effective than DTW and SEA in terms of alignment accuracy on both qualitative and quantitative levels. Therefore, QP-DTW would potentially be more suitable for many applications related to time series (e.g., data mining, pattern recognition, search/retrieval, motif discovery, classification, etc.).

인공신경망 기초 의사결정트리 분류기에 의한 시계열모형화에 관한 연구 (A Neural Network-Driven Decision Tree Classifier Approach to Time Series Identification)

  • 오상봉
    • 한국시뮬레이션학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 1996
  • We propose a new approach to classifying a time series data into one of the autoregressive moving-average (ARMA) models. It is bases on two pattern recognition concepts for solving time series identification. The one is an extended sample autocorrelation function (ESACF). The other is a neural network-driven decision tree classifier(NNDTC) in which two pattern recognition techniques are tightly coupled : neural network and decision tree classfier. NNDTc consists of a set of nodes at which neural network-driven decision making is made whether the connecting subtrees should be pruned or not. Therefore, time series identification problem can be stated as solving a set of local decisions at nodes. The decision values of the nodes are provided by neural network functions attached to the corresponding nodes. Experimental results with a set of test data and real time series data show that the proposed approach can efficiently identify the time seires patterns with high precision compared to the previous approaches.

  • PDF

The Pattern Recognition System Using the Fractal Dimension of Chaos Theory

  • Shon, Young-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권2호
    • /
    • pp.121-125
    • /
    • 2015
  • In this paper, we propose a method that extracts features from character patterns using the fractal dimension of chaos theory. The input character pattern image is converted into time-series data. Then, using the modified Henon system suggested in this paper, it determines the last features of the character pattern image after calculating the box-counting dimension, natural measure, information bit, and information (fractal) dimension. Finally, character pattern recognition is performed by statistically finding each information bit that shows the minimum difference compared with a normalized character pattern database.

오스테나이트계 스테인리스강 304 용접부의 초음파 형상 인식 평가를 위한 카오스 시뮬레이터의 구축 (Construction fo chaos simulator for ultrasonic pattern recognition evaluation of weld zone in austenitic stainless steel 304)

  • 이원;윤인식;장영권
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.108-118
    • /
    • 1998
  • This study proposes th analysis and evaluation method of time series ultrasonic signal using the chaos feature extraction for ultrasonic pattern recognition. Features extracted from time series data using the chaos time series signal analyze quantitatively weld defects. For this purpose, analysis objective in this study is fractal dimension and Lyapunov exponent. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaosity resulting from distance shifts such as 0.5 and 1.0 skip distance. Such differences in chaosity enables the evaluation of unique features of defects in the weld zone. In quantitative chaos feature extraction, feature values of 4.511 and 0.091 in the case of side hole and 4.539 and 0.115 in the case of vertical hole were proposed on the basis of fractal dimension and Lyapunov exponent. Proposed chaos feature extraction in this study can enhances ultrasonic pattern recognition results from defect signals of weld zone such as side hole and vertical hole.

  • PDF

Improved Linear Dynamical System for Unsupervised Time Series Recognition

  • Thi, Ngoc Anh Nguyen;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • 제10권1호
    • /
    • pp.47-53
    • /
    • 2014
  • The paper considers the challenges involved in measuring the similarities between time series, such as time shifts and the mixture of frequencies. To improve recognition accuracy, we investigate an improved linear dynamical system for discovering prominent features by exploiting the evolving dynamics and correlations in a time series, as the quality of unsupervised pattern recognition relies strongly on the extracted features. The proposed approach yields a set of compact extracted features that boosts the accuracy and reliability of clustering for time series data. Experimental evaluations are carried out on time series applications from the scientific, socio-economic, and business domains. The results show that our method exhibits improved clustering performance compared to conventional methods. In addition, the computation time of the proposed approach increases linearly with the length of the time series.

분기 한정적인 동적 타임 워핑 기반의 시계열 패턴인식 (Time Series Pattern Recognition based on Branch and Bound Dynamic Time Warping)

  • 장석우;박영재;김계영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권7호
    • /
    • pp.584-589
    • /
    • 2010
  • 시계열 패턴 인식에 일반적으로 많이 사용되는 동적인 타임 워핑 알고리즘은 대부분의 연산시간을 상관표를 작성하는데 소비한다. 그리고 이 연산시간을 줄이고자 전역 경로 제약조건을 설정하여 연산범위에 제한을 두는데, 이것은 패턴의 내용을 고려하지 않은 시간축에 의한 제한이다. 따라서 본 논문에서는 패턴의 형태에 따라 적응적으로 전역 경로 제약조건을 설정하여 보다 효율적으로 패턴인식을 수행하는 분기 한정적인 동적 타임 워핑 알고리즘을 제안한다. 제안된 방법의 성능 평가를 위한 실험에서는 분기 한정적인 동적 타임 워핑 알고리즘이 기존의 동적 타임 워핑 방법과 경로 거리는 유사하면서 연산 시간이 보다 개선되었음을 확인할 수 있었다.

자동차 ECU제어를 위한 음성인식 패턴매칭레벨에 관한 연구 (A Study on Voice Recognition Pattern matching level for Vehicle ECU control)

  • 안종영;김영섭;김수훈;허강인
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.75-80
    • /
    • 2010
  • 자동차 환경에서의 음성인식은 잡음처리가 매우 중요한 요소이다. 하드웨어 및 소프트웨어로 적인 접근방법으로 많은 연구가 되어 지고 있다. 하드웨어적인 방법으로는 Low-pass filter를 기본으로한 잡음처리 필터가 많이 연구되어 가시적인 성과를 보이고 있고, 소프트웨어적으로는 Noise canceler, 신경망 등 패턴인식 알고리듬의 연구가 이루어지고 있다. 본 논문에서는 시계열 패턴인식에 적용 가능한 알고리듬인 DTW(Dynamic Time Warping)를 자동차 잡음환경에 적용하여 그 음성인식을 위한 파라미터 패턴에 대한 매칭 레벨을 분류하여 잡음환경 적합한 패턴 매칭 레벨을 분석 하였다.