• Title/Summary/Keyword: Time-Series Data Classification

Search Result 220, Processing Time 0.029 seconds

EXTRACTING BASE DATA FOR FLOOD ANALYSIS USING HIGH RESOLUTION SATELLITE IMAGERY

  • Sohn, Hong-Gyoo;Kim, Jin-Woo;Lee, Jung-Bin;Song, Yeong-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.426-429
    • /
    • 2006
  • Flood caused by Typhoon and severe rain during summer is the most destructive natural disasters in Korea. Almost every year flood has resulted in a big lost of national infrastructure and loss of civilian lives. It usually takes time and great efforts to estimate the flood-related damages. Government also has pursued proper standard and tool for using state-of-art technologies. High resolution satellite imagery is one of the most promising sources of ground truth information since it provides detailed and current ground information such as building, road, and bare ground. Once high resolution imagery is utilized, it can greatly reduce the amount of field work and cost for flood related damage assessment. The classification of high resolution image is pre-required step to be utilized for the damage assessment. The classified image combined with additional data such as DEM and DSM can help to estimate the flooded areas per each classified land use. This paper applied object-oriented classification scheme to interpret an image not based in a single pixel but in meaningful image objects and their mutual relations. When comparing it with other classification algorithms, object-oriented classification was very effective and accurate. In this paper, IKONOS image is used, but similar level of high resolution Korean KOMPSAT series can be investigated once they are available.

  • PDF

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

Classification of Wind Sector in Pohang Region Using Similarity of Time-Series Wind Vectors (시계열 풍속벡터의 유사성을 이용한 포항지역 바람권역 분류)

  • Kim, Hyun-Goo;Kim, Jinsol;Kang, Yong-Heack;Park, Hyeong-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • The local wind systems in the Pohang region were categorized into wind sectors. Still, thorough knowledge of wind resource assessment, wind environment analysis, and atmospheric environmental impact assessment was required since the region has outstanding wind resources, it is located on the path of typhoon, and it has large-scale atmospheric pollution sources. To overcome the resolution limitation of meteorological dataset and problems of categorization criteria of the preceding studies, the high-resolution wind resource map of the Korea Institute of Energy Research was used as time-series meteorological data; the 2-step method of determining the clustering coefficient through hierarchical clustering analysis and subsequently categorizing the wind sectors through non-hierarchical K-means clustering analysis was adopted. The similarity of normalized time-series wind vector was proposed as the Euclidean distance. The meteor-statistical characteristics of the mean vector wind distribution and meteorological variables of each wind sector were compared. The comparison confirmed significant differences among wind sectors according to the terrain elevation, mean wind speed, Weibull shape parameter, etc.

A Study of Housing Environment Problems through the Daily newspapers ( I ) - The Change of a type of the Dong-A daily papers (1920~1990) - (일간지를 통해 본 주거환경문제의 연구 ( I ) - 동아일보 (1920년~1990년) 기사 유형의 변천 -)

  • 신경주
    • Journal of the Korean housing association
    • /
    • v.2 no.2
    • /
    • pp.41-53
    • /
    • 1991
  • This study discussed the change of housing environmental problems from the early 1900s to the present.The reason is to find the solution of serious housing environment problems. The documentary research method was used for this study.Articles of content analysis(N= 1129)were published in 1920(the first edition)to December. 31, 1990 which were The Dong - A daily news article about housing environment. The main content of this study was examined the change, such as the number of whole article by time series and importance of article(column number of article), classification of article subject, and the number of article by subject. On the basis of this data, was made by chronological classification of the change of housing environment problems for 70 years. Since overall results will become supply of right information about housing environment to fur peoples, will provide the oppronment that oneself ran participate the protection of housing environment, and further will take a part solution of housing environment problems.At the future, I am going to design deep analysis of article content by subject.

  • PDF

STag: Supernova Tagging and Classification

  • Davison, William;Parkinson, David;Tucker, Brad E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.3-46
    • /
    • 2021
  • Supernovae classes have been defined phenomenologically, based on spectral features and time series data, since the specific details of the physics of the different explosions remain unrevealed. However, the number of these classes is increasing as objects with new features are observed, and the next generation of large-surveys will only bring more variety to our attention. We apply the machine learning technique of multi-label classification to the spectra of supernovae. By measuring the probabilities of specific features or 'tags' in the supernova spectra, we can compress the information from a specific object down to that suitable for a human or database scan, without the need to directly assign to a reductive 'class'. We use logistic regression to assign tag probabilities, and then a feed-forward neural network to filter the objects into the standard set of classes, based solely on the tag probabilities. We present STag, a software package that can compute these tag probabilities and make spectral classifications.

  • PDF

HRV spectrum analysis to observe the changes in ANS caused by sympathectomy and vagotomy (Sympathectomy 및 Vagotomy에 따른 자율신경계 변화의 관찰을 위한 HRV 스펙트럼 분석)

  • Yeo, H.S.;Im, J.J.;Park, H.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.443-446
    • /
    • 1997
  • HRV(heart rate variability) is the time series data of R-R interval time duration based on ECGs. Power spectral analysis of HRV has recently been used to define the activity of ANS(autonomic nervous system). In this study, 14 rats were divided into two groups, sympathectomy and vagotomy. During the experiments, ECGs of rats were collected three times at each experimental conditions or the duration of 5 minutes, where sampling frequency was set at 2KHz. After the application of the Berger's Serires algorithm to ECG raw data, power spectrum of HRV was obtained via FFT. Results showed that HF/LF were increased or the sympathectomy group and decreased or the vagotomy group. It implies that the variations in HF/LF components could be used or the ANS function classification.

  • PDF

A Study on the Fractal Attractor Creation and Analysis of the Printed Korean Characters

  • Shon, Young-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • Chaos theory is a study researching the irregular, unpredictable behavior of deterministic and non-linear dynamical system. The interpretation using Chaos makes us evaluate characteristic existing in status space of system by tine series, so that the extraction of Chaos characteristic understanding and those characteristics enables us to do high precision interpretation. Therefore, This paper propose the new method which is adopted in extracting character features and recognizing characters using the Chaos Theory. Firstly, it gets features of mesh feature, projection feature and cross distance feature from input character images. And their feature is converted into time series data. Then using the modified Henon system suggested in this paper, it gets last features of character image after calculating Box-counting dimension, Natural Measure, information bit and information dimension which are meant fractal dimension. Finally, character recognition is performed by statistically finding out the each information bit showing the minimum difference against the normalized pattern database. An experimental result shows 99% character classification rates for 2,350 Korean characters (Hangul) using proposed method in this paper.

Process Fault Probability Generation via ARIMA Time Series Modeling of Etch Tool Data

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.241-241
    • /
    • 2012
  • Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.

  • PDF

Dynamic RNN-CNN malware classifier correspond with Random Dimension Input Data (임의 차원 데이터 대응 Dynamic RNN-CNN 멀웨어 분류기)

  • Lim, Geun-Young;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.533-539
    • /
    • 2019
  • This study proposes a malware classification model that can handle arbitrary length input data using the Microsoft Malware Classification Challenge dataset. We are based on imaging existing data from malware. The proposed model generates a lot of images when malware data is large, and generates a small image of small data. The generated image is learned as time series data by Dynamic RNN. The output value of the RNN is classified into malware by using only the highest weighted output by applying the Attention technique, and learning the RNN output value by Residual CNN again. Experiments on the proposed model showed a Micro-average F1 score of 92% in the validation data set. Experimental results show that the performance of a model capable of learning and classifying arbitrary length data can be verified without special feature extraction and dimension reduction.

Radio Variability and Random Walk Noise Properties of Four blazars

  • Park, Jong-Ho;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2014
  • We present the results of a time series analysis of the long-term radio lightcurves of four blazars: 3C 279, 3C 345, 3C 446, and BL Lacertae. We exploit the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program which provides densely sampled lightcurves spanning 32 years in time in three frequency bands located at 4.8, 8, and 14.5,GHz. Our sources show mostly flat or inverted (spectral indices -0.5 < alpha < 0) spectra, in agreement with optically thick emission. All lightcurves show strong variability on all time scales. Analyzing the time lags between the lightcurves from different frequency bands, we find that we can distinguish high-peaking flares and low-peaking flares in accord with the classification of Valtaoja et al. (1992). The periodograms (temporal power spectra) of the observed lightcurves are consistent with random-walk powerlaw noise without any indication of (quasi-)periodic variability. The fact that all four sources studied are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars.

  • PDF