• Title/Summary/Keyword: Time-Joint Frequency Analysis Method

Search Result 29, Processing Time 0.031 seconds

Nondestructive Evaluation for Artificial Degraded Stainless 316 Steel by Time-Frequency Analysis Method

  • Nam, Ki-Woo;Kim, Young-Un
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.87-92
    • /
    • 2001
  • In this studies, joint time-frequency analysis techniques were applied to analyze ultrasonic signals in the degraded austenitic 316 stainless steels, to study the evolution of damage in these materials. It was demonstrated that the nonstationary characteristics of ultrasonic signals could be analyzed effectively by these methods. The WVD was more effective for analyzing the attenuation and frequency characteristics of the degraded materials through ultrasonic. It is indicated that the joint time-frequency analysis, WVD method, should also be useful in evaluating various damages and defects in structural members.

  • PDF

시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성 (Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method)

  • 남기우;이건찬
    • 한국해양공학회지
    • /
    • 제17권3호
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

열화된 SUS 316강의 시간-주파수 해석에 의한 비파괴평가 (Nondestructive Evaluation by Joint Time-Frequency Analysis of Degraded SUS 316 Steel)

  • 이건찬;오정환;남기우;이주석
    • 비파괴검사학회지
    • /
    • 제19권4호
    • /
    • pp.270-276
    • /
    • 1999
  • 지금까지 퓨리에 변환이 신호처리법으로 가장 널리 사용되고 있다. 그러나, 이 방법은 신호의 주파수성분이 시간에 대하여 어떻게 변화하는지를 표현하지 못한다. 따라서, 최근 이와 같이 비정상신호를 표현하지 못하는 퓨리에 변환의 단점을 보완하여, 신호의 시간과 주파수에 대한 정보를 동시에 표현할 수 있는 시간-주파수 해석법들이 개발되기 시작하였다. 본 연구에서는 인공열화된 SUS 316강의 초음파신호를 시간-주파수 해석법으로 분석하였다. 특히, 단시간 퓨리에 변화법과 위그너 빌 분포법을 이용하여 초음파 신호의 주파수 성분과 특성을 분석하였다.

  • PDF

Detection of Breathing Rates in Through-wall UWB Radar Utilizing JTFA

  • Liang, Xiaolin;Jiang, Yongling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5527-5545
    • /
    • 2019
  • Through-wall ultra-wide band (UWB) radar has been considered as one of the preferred and non-contact technologies for the targets detection owing to the better time resolution and stronger penetration. The high time resolution is a result of a larger of bandwidth of the employed UWB pulses from the radar system, which is a useful tool to separate multiple targets in complex environment. The article emphasised on human subject localization and detection. Human subject usually can be detected via extracting the weak respiratory signals of human subjects remotely. Meanwhile, the range between the detection object and radar is also acquired from the 2D range-frequency matrix. However, it is a challenging task to extract human respiratory signals owing to the low signal to clutter ratio. To improve the feasibility of human respiratory signals detection, a new method is developed via analysing the standard deviation based kurtosis of the collected pulses, which are modulated by human respiratory movements in slow time. The range between radar and the detection target is estimated using joint time-frequency analysis (JTFA) of the analysed characteristics, which provides a novel preliminary signature for life detection. The breathing rates are obtained using the proposed accumulation method in time and frequency domain, respectively. The proposed method is validated and proved numerically and experimentally.

수정된 HHT 기법을 이용하여 회전하는 프로펠러 날개에 의한 마이크로 도플러 신호의 해석 (Analysis of Micro-Doppler Signatures from Rotating Propellers Using Modified HHT Method)

  • 박지훈;최익환;명로훈
    • 한국전자파학회논문지
    • /
    • 제23권9호
    • /
    • pp.1100-1106
    • /
    • 2012
  • 본 논문에서는 시간-주파수 동시 해석 기법 중 하나인 수정된 HHT 기법을 이용하여 회전하는 프로펠러의 날개에서 산란되는 마이크로 도플러 신호를 분석하였다. 프로펠러의 날개 모서리에 산란되는 산란파는 등가전류법(ECM)을 이용하여 구했다. 산란파의 시간 데이터를 얻은 후, 수정된 HHT 기법을 마이크로 도플러 신호의 해석에 적용하였다. 해석 결과는 실제 날개의 동특성에 잘 부합하였으며, 회전체로부터 발생하는 마이크로 도플러의 정편파적인 특성을 보였다. 수정된 HHT를 이용한 시간-주파수 동시 해석은 작은 레이더 단면적 값을 갖는 소형 비행체를 식별하기 위한 명확한 특성을 제공하였다.

체결력에 따른 볼트 결합부의 접촉응력분포계수 평가 (Estimation of Contact Stress Distribution Factor in Bolt Joint with variable Fastening torque)

  • 김종규
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.73-79
    • /
    • 1999
  • Most of mechanical structures are combined of substructures such as beams and/or plates. There are few systems with unibody structures but are many systems with united body structures. Generally the dynamic a nalysis of whole structures is performed under alternation load. In the structure design, the analysis of each bolted joint is more important than others for zero severity. This paper presents the analysis method of contact stress distribution factor in the bolted joint with variable fastening torque on joints in the structure. At first, a static vibration test was performed to find out a nominal stress of bolt jointed plates from the relationship between natural frequency and nominal stress. Then a contact stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promisiong implications for safer design with index of contact stress distribution factor and has merits for cost-down and saving time at the beginning of vehicle development.

  • PDF

초음파 주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가 (Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Frequency Analysis Spectrum Method)

  • 정민화;이상국
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.90-98
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions like high temperature and high pressure for an extended period time. Such material degradation lead to various component faliures causing serious accidents at the plant. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for their preparing creep degraded specimens have been carried out for the purpose of nondestructive evaluation for creep damage which can occur in high-temperature pipelline of fossil power plant. As a result of ultrasonic tests for crept specimens, we confirmed that the high frequency side spectra decrease and central frequency components shift to low frequency bans, and bandwiths decrease as increasing creep damage in backwall echoes.

  • PDF

Joint Time Delay and Angle Estimation Using the Matrix Pencil Method Based on Information Reconstruction Vector

  • Li, Haiwen;Ren, Xiukun;Bai, Ting;Zhang, Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5860-5876
    • /
    • 2018
  • A single snapshot data can only provide limited amount of information so that the rank of covariance matrix is not full, which is not adopted to complete the parameter estimation directly using the traditional super-resolution method. Aiming at solving the problem, a joint time delay and angle estimation using matrix pencil method based on information reconstruction vector for orthogonal frequency division multiplexing (OFDM) signal is proposed. Firstly, according to the channel frequency response vector of each array element, the algorithm reconstructs the vector data with delay and angle parameter information from both frequency and space dimensions. Then the enhanced data matrix for the extended array element is constructed, and the parameter vector of time delay and angle is estimated by the two-dimensional matrix pencil (2D MP) algorithm. Finally, the joint estimation of two-dimensional parameters is accomplished by the parameter pairing. The algorithm does not need a pseudo-spectral peak search, and the location of the target can be determined only by a single receiver, which can reduce the overhead of the positioning system. The theoretical analysis and simulation results show that the estimation accuracy of the proposed method in a single snapshot and low signal-to-noise ratio environment is much higher than that of Root Multiple Signal Classification algorithm (Root-MUSIC), and this method also achieves the higher estimation performance and efficiency with lower complexity cost compared to the one-dimensional matrix pencil algorithm.

비침습적 관절질환 진단을 위한 관절음의 시주파수 분석 (Time-frequency Analysis of Vibroarthrographic Signals for Non-invasive Diagnosis of Articular Pathology)

  • 김거식;송철규;서정환
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.729-734
    • /
    • 2008
  • Vibroarthrographic(VAG) signals, emitted by human knee joints, are non-stationary and multi-component in nature and time-frequency distributions(TFD) provide powerful means to analyze such signals. The objective of this paper is to classify VAG signals, generated during joint movement, into two groups(normal and patient group) using the characteristic parameters extracted by time-frequency transform, and to evaluate the classification accuracy. Noise within TFD was reduced by singular value decomposition and back-propagation neural network(BPNN) was used for classifying VAG signals. The characteristic parameters consist of the energy parameter, energy spread parameter, frequency parameter, frequency spread parameter by Wigner-Ville distribution and the amplitude of frequency distribution, the mean and the median frequency by fast Fourier transform. Totally 1408 segments(normal 1031, patient 377) were used for training and evaluating BPNN. As a result, the average value of the classification accuracy was 92.3(standard deviation ${\pm}0.9$)%. The proposed method was independent of clinical information, and showed good potential for non-invasive diagnosis and monitoring of joint disorders such as osteoarthritis and chondromalacia patella.