• Title/Summary/Keyword: Time-Domain Analysis

Search Result 2,339, Processing Time 0.032 seconds

Multi-scale Correlation Analysis between Sea Level Anomaly and Climate Index through Wavelet Approach (웨이블릿 접근을 통한 해수면 높이와 기후 지수간의 다중 스케일 상관 관계 분석)

  • Hwang, Do-Hyun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.587-596
    • /
    • 2022
  • Sea levels are rising as a result of climate change, and low-lying areas along the coast are at risk of flooding. Therefore, we tried to investigate the relationship between sea level change and climate indices using satellite altimeter data (Topex/Poseidon, Jason-1/2/3) and southern oscillation index (SOI) and the Pacific decadal oscillation (PDO) data. If time domain data were converted to frequency domain, the original data can be analyzed in terms of the periodic components. Fourier transform and Wavelet transform are representative periodic analysis methods. Fourier transform can provide only the periodic signals, whereas wavelet transform can obtain both the periodic signals and their corresponding time location. The cross-wavelet transformation and the wavelet coherence are ideal for analyzing the common periods, correlation and phase difference for two time domain datasets. Our cross-wavelet transform analysis shows that two climate indices (SOI, PDO) and sea level height was a significant in 1-year period. PDO and sea level height were anti-phase. Also, our wavelet coherence analysis reveals when sea level height and climate indices were correlated in short (less than one year) and long periods, which did not appear in the cross wavelet transform. The two wavelet analyses provide the frequency domains of two different time domain datasets but also characterize the periodic components and relative phase difference. Therefore, our research results demonstrates that the wavelet analyses are useful to analyze the periodic component of climatic data and monitor the various oceanic phenomena that are difficult to find in time series analysis.

A Dynamic Simulation of Voltage Instability Using EMTP (EMTP를 이용한 전압 불안정 현상의 동적 시뮬레이션)

  • 허정용;김철환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.295-300
    • /
    • 2003
  • Voltage instability has been studied for some decade now. But, There is not generally accepted definition of voltage instability because of the complex phenomenon and the variety of ways in which it can manifest itself. Both IEEE and CIGRE have the respective definitions. The areas of voltage instability research are the analysis, simulation and countermeasure of voltage instability. It needs to model the components of the power system to simulate the voltage instability and voltage collapse. At the beginning, the static simulation was used. This method provides the voltage stability indices and it requires less CPU resource and gives much insight into the voltage and power problem. However, it is less accurate than the dynamic simulation peformed in the time domain simulation. So, when it appears difficult to secure the voltage stability margin in a static stability, it is necessary to perform the dynamic simulation. To perform time-domain simulation, we have to model the dynamic component of the power system like a generator and a load. The dynamic simulation provides the accurate result of the voltage instability. But, it is not able to provide the sensitivity information or the degree of stability and it is time consuming and it needs much CPU resource. In this Paper, we perform a dynamic simulation of voltage instability and voltage collapse using EMTP MODELS. The exponential load model is designed with MODEIS and this load model is connected with test power system. The result shows the process of voltage change in time domain when the voltage instability or voltage collapse occurs.

Time Domain Analysis of Ship Motion in Waves Using Finite Element Method (유한요소법을 이용한 파랑 중 선박운동의 시간영역 해석기법 개발)

  • Nam, Bo-Woo;Sung, Hong-Gun;Hong, Sa-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • The three-dimensional ship motion with forward speed was solved by a finite element method in the time domain. A boundary value problem was described in the frame of a fixed-body reference, and the problem was formulated according to Double-Body and Neumann-Kelvin linearizations. Laplace's equation with boundary conditions was solved by a classical finite element method based on the weak formulation. Chebyshev filtering was used to get rid of an unwanted saw-tooth wave and a wave damping zone was adopted to impose a numerical radiation condition. The time marching of the free surface was performed by the 4th order Adams-Bashforth-Moulton method. Wigley I and Wigely III models were considered for numerical validation. The hydrodynamic coefficients and wave exciting forces were validated by a comparison with experimental data and the numerical results of the Wigley I. The effects of the linearization are also discussed. The motion RAO was also checked with a Wigley III model through mono-chromatic and multi-chromatic regular waves.

An Overview of Flutter Prediction in Tests Based on Stability Criteria in Discrete-Time Domain

  • Matsuzaki, Yuji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.305-317
    • /
    • 2011
  • This paper presents an overview on flutter boundary prediction in tests which is principally based on a system stability measure, named Jury's stability criterion, defined in the discrete-time domain, accompanied with the use of autoregressive moving-average (AR-MA) representation of a sampled sequence of wing responses excited by continuous air turbulences. Stability parameters applicable to two-, three- and multi-mode systems, that is, the flutter margin for discrete-time systems derived from Jury's criterion are also described. Actual applications of these measures to flutter tests performed in subsonic, transonic and supersonic wind tunnels, not only stationary flutter tests but also a nonstationary one in which the dynamic pressure increased in a fixed rate, are presented. An extension of the concept of nonstationary process approach to an analysis of flutter prediction of a morphing wing for which the instability takes place during the process of structural morphing will also be mentioned. Another extension of analytical approach to a multi-mode aeroelastic system is presented, too. Comparisons between the prediction based on the digital techniques mentioned above and the traditional damping method are given. A future possible application of the system stability approach to flight test will be finally discussed.

Development of a Three Dimensional Elastic Plastic Analysis System for the Integrity Evaluation of Nuclear Power Plant Components (원자력발전소 주요기기의 건전성 평가를 위한 3차원 탄소성 해석 시스템의 개발)

  • Huh, Nam-Su;Im, Chang-Ju;Kim, Young-Jin;Pyo, Chang-Ryul;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2015-2021
    • /
    • 2000
  • In order to evaluate the integrity of nuclear power plant components, the analysis based on fracture mechanics is crucial. For this purpose, finite element method is popularly used to obtain J-integral. However, it is time consuming to design the finite element model of a cracked structure. Also, the J-integral should be verified by alternative methods since it may differ depending on the calculation method. The objective of this paper is to develop a three-dimensional elastic-plastic J-integral analysis system which is named as EPAS program. The EPAS program consists of an automatic mesh generator for a through-wall crack and a surface crack, a solver based on ABAQUS program, and a J-integral calculation program which provides DI (Domain Integral) and EDI (Equivalent Domain Integral) based J-integral calculation. Using the EPAS program, an optimized finite element model for a cracked structure can be generated and corresponding J-integral can be obtained subsequently.

Study on dynamic behavior analysis of towed line array sensor

  • Shin, Hyun-Kyoung;Ryue, Jung-Soo;Ahn, Hyung-Taek;Seo, Hee-Seon;Kwon, Oh-Cho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-19
    • /
    • 2012
  • A set of equations of motion is derived for vibratory motions of an underwater cable connected to a moving vehicle at one end and with drogues at the other end. From the static analysis, cable configurations are obtained for different vehicle speeds and towing pretensions are determined by fluid resistance of drogues. Also the dynamic analysis is required to predict its vibratory motion. Nonlinear fluid drag forces greatly influence the dynamic tension. In this study, a numerical analysis program was developed to find out the characteristic of cable behaviour. The motion is described in terms of space and time coordinates based on Chebyshev polynomial expansions. For the spatial integration the collocation method is employed and the Newmark method is applied for the time integration. Dynamic tensions, displacements, velocities, accelerations were predicted in the time domain while natural frequencies and transfer functions were obtained in the frequency domain.

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Time-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 시간 영역 해석)

  • Kim, Ki-Bum;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.224-231
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the time domain. The equation of motion, an integro-differential equation, was derived following the fashion of Cummins (1962), and its coefficients including the retardation function were obtained using the numerical solution of Lee (2012). The equation was solved numerically, and the experiment was also carried out in the CNU flume. Using our numerical and experimental results, the natural frequency was defined as its average value given by the motion data excluding those of the initial stage. Our results were then compared with those of the existing investigations such as Maskell and Ursell (1970), Ito (1977) and Yeung (1982) as well as the newly obtained results of Lee (2012). Comparison showed that the natural frequency obtained here agrees well with that of Lee (2012), which was found through the frequency domain analysis. It was also shown that the approximation of heaving motion by a damped harmonic oscillation, which was regarded as suitable by most previous investigators, is not physically suitable for the reason that can be clearly shown through comparing the shape of MCFRs(Modulus of Complex Frequency Response). Furthermore, we found that although the previous approximations yield the damping ratio significantly different from our result the magnitude of natural frequency is not much different from our result.

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

Design of Wave Energy Extractor with a Linear Electric Generator -Part II. Linear Generator (선형발전기가 탑재된 파랑에너지 추출장치 설계 -II. 선형발전기)

  • Cho, Il Hyoung;Choi, Jang Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.174-181
    • /
    • 2014
  • Design procedure of LEG(Linear Electric Generator) is introduced by performing the time-domain analysis for the heaving motion of a floating buoy coupled with LEG. A vertical truncated buoy is selected as a point absorber and a double-sided Halbach array mover and cored slotless stator is adopted as a linear electric generator. LEG with a double-sided Halbach array mover and cored slotless stator is designed with the input data such as the heave motion velocity and wave exciting forces in time-domain. The validity of designed LEG is confirmed by performing generating-characteristic-analysis under the sinusoidal motion of a buoy, based on the numerical techniques such as FE(Finite Element) analysis. In particular, an ECM(Equivalent Circuit Method) is employed as the design tool for the prediction of generating characteristics under irregular wave conditions. Finally, we confirm that the ECM gives reasonable and fast results without sacrifice of accuracy.

FVTD-LTS Method for Electromagnetic Field Analysis by Dielectric with large Permittivity (큰 유전율을 가지는 유전체의 전자계 해석을 위한 FVTD-LTS 기법)

  • Yoon, Kwang-Yeol;Chai, Yong-Yoong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.334-338
    • /
    • 2006
  • The finite volume time domain(FVTD) method gives accurate results for the calculation of electromagnetic wave propagation but it should be noted that the number of sampling points per wavelength should be increased when more accurate numerical results are required. Moreover it requires large amount of computer memory resources. In this paper we propose a modified FVTD that employs a time subdivision. The local time-subdivided FVTD(FVTD-LTS) method is enough to divide the space domain grid with a large step size. This method can reduce computation time and memory resources. To validate the proposed method, sever numerical examples are presented. We have then shown that the proposed method yields a reasonable solution.