• Title/Summary/Keyword: Time-Domain Analysis

Search Result 2,326, Processing Time 0.032 seconds

Comparison of EMD and HP Filter for Cycle Extraction with Korean Macroeconomic Indices (순환성분 추출을 위한 EMD와 HP 필터의 비교분석: 한국의 거시 경제 지표에의 응용)

  • Park, Minjeong;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.431-444
    • /
    • 2014
  • We introduce the empirical model decomposition (EMD) to decompose a time series into a set of components in the time-frequency domain. By using EMD, we also extract cycle and trend components from major Korean macroeconomic indices and forecast the indices with the components combined. In order to evaluate their efficiencies, we investigate volatility, autocorrelation, persistence, Granger causality, nonstationarity, and forecasting performance. They are then compared with those by Hodrick-Prescott filter which is the most commonly used method.

Computation of Pressure Fields for a Hybrid Particle-Mesh Method (하이브리드 입자-격자 방법에서의 압력장 계산)

  • Lee, Seung-Jae;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.328-333
    • /
    • 2014
  • A hybrid particle-mesh method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations is a combination of the Vortex-In-Cell(VIC) method for convection and the penalization method for diffusion. The key feature of the numerical methods is to determine velocity and vorticity fields around a solid body on a temporary grid, and then the time evolution of the flow is computed by tracing the convection of each vortex element using the Lagrangian approach. Assuming that the vorticity and velocity fields are to be computed in time domain analysis, pressure fields are estimated through a complete set of solutions at present time step. It is possible to obtain vorticity and velocity fields prior to any pressure calculation since the pressure term is eliminated in the vorticity-velocity formulation. Therefore, pressure field is explicitly treated by solving a suitable Poisson equation. In this paper, we propose a simple way to numerically implement the vorticity-velocity-pressure formulation including a penalty term. For validation of the proposed numerical scheme, we illustrate the early development of viscous flows around an impulsive started circular cylinder for Reynolds number of 9500.

Development of Three Dimensional Chloride Ion Penetration Model Based on Finite Element Method (유한요소법을 이용한 3차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.43-49
    • /
    • 2015
  • Most of agricultural structures located in seashore could not avoid rapid deterioration of concrete because chloride-ion and $CO_2$ gradually penetrate into concrete. However, since most of models can be able to describe the phenomenon of penetration by using one or two dimensional models based on finite difference method (FDM), those modes can not simulate the real geometry and it takes a lot of computational time to complete even the calculation. To overcome those weaknesses, three dimensional numerical model considering time dependent variables such as surface concentration of chloride and diffusion coefficient of domain based on finite element method (FEM) was suggested. This model also included the neutralization occurred by the penetration of $CO_2$. Because the model used various sizes of tetrahedral mesh instead of equivalent rectangular mesh, it reduced the computational time to compare with FDM. As this model is based on FEM, it will be easily extended to execute multi-physics simulation including water evaporation and temperature change of concrete.

Blocker Design of Closed Die Forging with Wavelet Transform (이산 웨이블릿 변환을 이용한 형단조 공정의 예비성형용 금형 설계)

  • 한상훈;임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2003
  • In a closed-die forging process, blocker has been used to fill and distribute metal well in finisher die. Generally, the blocker shape was determined by an expert with many experiences. However, the manual blocker design process takes much time and efforts, so various automatic methods for the blocker design process have been suggested for the last three decades. The method with filtering in FFT (Fast Fourier Transform) for the blocker design provides general solution than other methods. But. due to the properties of FFT in time-frequency domain, this method has some drawbacks such as long calculation time, difficulty of local control and additional boundary process after filtering. In this study. DWT (Discrete Wavelet Transform), which is more flexible and is more wildly used than FFT, is applied to the blocker design. The method with filtering in DWT is very proper to design blocker in both 2-D and 3-D shapes. To verify the efficiency of this method, blockers of some models are designed and the results show that blocker design with DWT is effective for the blocker designs.

Suboptimum detection of space-time trellis coded OFDM over slowly fading channel (느린 페이딩 채널에서 공간-시간 트렐리스 부호화된 OFDM의 준최적 검파)

  • Kim, Young-Ju;Li, Xun;Park, Noe-Yoon;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.28-33
    • /
    • 2007
  • We present a space-time trellis coded OFDM system in flow fading channels. Generalized principal ratio combining (GPRC) is also analyzed theoretically in frequency domain. The analysis show that the decoding metric of GPRC include the metrics of maximum likelihood (ML) and PRC. The computer simulations with M-PSK modulation are obtained in frequency flat and frequency selective lading channels. The decoding complexity and simulation running times are also evaluated among the decoding schemes.

Classification of Normal/Abnormal Conditions for Small Reciprocating Compressors using Wavelet Transform and Artificial Neural Network (웨이브렛변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류)

  • Lim, Dong-Soo;An, Jin-Long;Yang, Bo-Suk;An, Byung-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.796-801
    • /
    • 2000
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a signal classification method for diagnosing the rotating machinery using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them are compared with each other. This paper is focused on the development of an advanced signal classifier to automatise the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

Nonlinear Dynamic Analysis of Helical Gears with Backlash by Torque Fluctuation (토크 변동에 의한 백래시를 가진 헬리컬 기어의 비선형 동적 해석)

  • Park, Chan-IL
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.677-684
    • /
    • 2010
  • Backlashes of gears provide gears for good lubrication and for removal of the interference between teeth by the wear and manufacturing errors. The backlash is the strong nonlinear factor to gears. This study deals with nonlinear modeling of helical gears with backlash. Excitation of helical gears comes from torque variation, the tooth surface error, and the periodical change of mesh stiffness. To study the effect of torque fluctuation, equation of motion for the single degree of freedom torsional model of helical gears with the periodical change of mesh stiffness and the backlash was derived. The Newmark beta method and the Newton-Raphson method were used to obtain the nonlinear behaviors of mesh forces of helical gears. All excitation frequencies initially caused the tooth separation and single-sided impacts of the gear pair and eventually led to the normal tooth contact. However, some special excitation frequencies caused the single-sided impacts in the entire time as well as the initial time. Damping increase reduced the duration of single-sided impacts, and the backlash increase caused those in the entire time domain.

Analysis of Microstrip Circuit using FDTD and Signal Processing (시간영역 유한차분법과 신호처리 기법을 사용한 마이크로스트림 회로 해석)

  • 장홍주;장상건;방성일
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.1
    • /
    • pp.110-116
    • /
    • 1999
  • In this paper, signal processing is utilized to reduce the computational time which is one of weak point of FDTD(finite difference time domain) method. Compared with the direct FDTD. combination of FDTD and signal processing achieves the same type of accuracy in much shorter time The combination method spends 140 minutes to analyze the frequence characteristics of the microstrip lowpass filter while the direct FDTD consumes about 900 minutes. To verify the obtained results, microstrip lowpass filter is fabricated on dielectric substrate and the measured results are compared with the analyzed results. It is shown that measured results are in good agreement with the theoretical results.

  • PDF

Blast load induced response and the associated damage of buildings considering SSI

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.349-365
    • /
    • 2014
  • The dynamic response of structures under extremely short duration dynamic loads is of great concern nowadays. This paper investigates structures' response as well as the associated structural damage to explosive loads considering and ignoring the supporting soil flexibility effect. In the analysis, buildings are modeled by two alternate approaches namely, (1) building with fixed supports, (2) building with supports accounting for soil-flexibility. A lumped parameter model with spring-dashpot elements is incorporated at the base of the building model to simulate the horizontal and rotational movements of supporting soil. The soil flexibility for various shear wave velocities has been considered in the investigation. In addition, the influence of variation of lateral natural periods of building models on the obtained response and peak response time-histories besides damage indices has also been investigated under blast loads with different peak over static pressures. The Dynamic response is obtained by solving the governing equations of motion of the considered building model using a developed Matlab code based on the finite element toolbox CALFEM. The predicted results expressed in time-domain by the building model incorporating SSI effect are compared with the corresponding model results ignoring soil flexibility effect. The results show that the effect of surrounding soil medium leads to significant changes in the obtained dynamic response of the considered systems and hence cannot be simply ignored in damage assessment and response time-histories of structures where it increases response and amplifies damage of structures subjected to blast loads. Moreover, the numerical results provide an understanding of level of damage of structure through the computed damage indices.

Time dependent numerical simulation of MFL coil sensor for metal damage detection

  • Azad, Ali;Lee, Jong-Jae;Kim, Namgyu
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.727-735
    • /
    • 2021
  • Recently, non-destructive health monitoring methods such as magnetic flux leakage (MFL) method, have become popular due to their advantages over destructive methods. Currently, numerical study on this field has been limited to simplified studies by only obtaining MFL instead of induced voltage inside coil sensor. In this study, it was proposed to perform a novel numerical simulation of MFL's coil sensor by considering vital parameters including specimen's motion with constant velocity and saturation status of specimen in time domain. A steel-rod specimen with two stepwise cross-sectional changes (i.e., 21% and 16%) was fabricated using low carbon steel. In order to evaluate the results of numerical simulation, an experimental test was also conducted using a magnetic probe, with same size specimen and test parameters, exclusively. According to comparative results of numerical simulation and experimental test, similar signal amplitude and signal pattern were observed. Thus, proposed numerical simulation method can be used as a reliable source to check efficiency of sensor probe when different size specimens with different defects should be inspected.