• Title/Summary/Keyword: Time-Domain Analysis

Search Result 2,326, Processing Time 0.031 seconds

Performance Analysis of IPDL Methods Using High Resolution Channel Estimation Technique for W-CDMA systems (W-CDMA 시스템에서 고해상 채널 추정을 이용한 IPDL 기법의 무선 측위 성능분석)

  • 朴雲龍;崔州平;李元澈
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.6
    • /
    • pp.10-10
    • /
    • 2002
  • This paper introduces the high-resolution channel estimation technique which are used to estimate the first arrival multipath delay component. The proposed technique yields the precise estimate of the first time arrival which is directly related to the performance of TDOA-based position location. The proposed technique utilizes the transformed auto-correlation function of received common pilot signal in frequency domain, its samples compose the hermitian Toeplitz matrix at sequel. Then the time delay components could be estimated with precision by the analysis of eigen-structure of corresponding matrix. In this paper, obeying the modified CODIT model, the performance of the PR-IPDL(Pseudo Random-Idle Period Downlink) and TA-IPDL(Time Aligned-Idle Period Downlink considered as 3GPP position location technique will be exploited systematically through the computer simulations with applying the proposed technique.

Performance Analysis of IPDL Methods Using High Resolution Channel Estimation Technique for W-CDMA systems (W-CDMA 시스템에서 고해상 채널 추정을 이용한 IPDL 기법의 무선 측위 성능분석)

  • Park, Un-Yong;Choe, Ju-Pyeong;Lee, Won-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.6
    • /
    • pp.268-276
    • /
    • 2002
  • This paper introduces the high-resolution channel estimation technique which are used to estimate the first arrival multipath delay component. The proposed technique yields the precise estimate of the first time arrival which is directly related to the performance of TDOA-based position location. The proposed technique utilizes the transformed auto-correlation function of received common pilot signal in frequency domain, its samples compose the hermitian Toeplitz matrix at sequel. Then the time delay components could be estimated with precision by the analysis of eigen-structure of corresponding matrix. In this paper, obeying the modified CODIT model, the performance of the PR-IPDL(Pseudo Random-Idle Period Downlink) and TA-IPDL(Time Aligned-Idle Period Downlink considered as 3GPP position location technique will be exploited systematically through the computer simulations with applying the proposed technique.

A Study on Frequency-Time Plane Analysis of Wavelet (웨이브렛의 주파수-시간 평면 해석에 관한 연구)

  • Bae, Sang-Bum;Ryu, Ji-Goo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Recently, many methods to analyze signal have been proposed and representative methods are the Fourier transform and wavelet transform. In these methods, the Fourier transform represents signal with combination cosine and sine at all locations in the frequency domain. However, it doesn't provide time information that particular frequency occurs in signal and depends on only the global feature of the signal. So, to improve these points the wavelet transform which is capable of multiresolution analysis has been applied to many fields such as speech processing, image processing and computer vision. And the wavelet transform, which uses changing window according to scale parameter, presents time-frequency localization. In this paper, we proposed a new approach using a wavelet of cosine and sine type and analyzed features of signal in a limited point of frequency-time plane.

  • PDF

A Study For Optimizing Input Waveforms In Radiofrequency Liver Tumor Ablation Using Finite Element Analysis (유한 요소 해석을 이용한 고주파 간 종양 절제술의 입력 파형 최적화를 위한 연구)

  • Lim, Do-Hyung;NamGung, Bum-Seok;Lee, Tae-Woo;Choi, Jin-Seung;Tack, Gye-Rae;Kim, Han-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.235-243
    • /
    • 2007
  • Hepatocellular carcinoma is significant worldwide public health problem with an estimated annually mortality of 1,000,000 people. Radiofrequency (RF) ablation is an interventional technique that in recent years has come to be used for treatment of the hepatocellualr carcinoma, by destructing tumor tissues in high temperatures. Numerous studies have been attempted to prove excellence of RF ablation and to improve its efficiency by various methods. However, the attempts are sometimes paradox to advantages of a minimum invasive characteristic and an operative simplicity in RF ablation. The aim of the current study is, therefore, to suggest an improved RF ablation technique by identifying an optimum RF pattern, which is one of important factors capable of controlling the extent of high temperature region in lossless of the advantages of RF ablation. Three-dimensional finite element (FE) model was developed and validated comparing with the results reported by literature. Four representative Rf patterns (sine, square, exponential, and simulated RF waves), which were corresponding to currents fed during simulated RF ablation, were investigated. Following parameters for each RF pattern were analyzed to identify which is the most optimum in eliminating effectively tumor tissues. 1) maximum temperature, 2) a degree of alteration of maximum temperature in a constant time range (30-40 second), 3) a domain of temperature over $47^{\circ}C$ isothermal temperature (IT), and 4) a domain inducing over 63% cell damage. Here, heat transfer characteristics within the tissues were determined by Bioheat Governing Equation. Developed FE model showed 90-95% accuracy approximately in prediction of maximum temperature and domain of interests achieved during RF ablation. Maximum temperatures for sine, square, exponential, and simulated RF waves were $69.0^{\circ}C,\;66.9^{\circ}C,\;65.4^{\circ}C,\;and\;51.8^{\circ}C$, respectively. While the maximum temperatures were decreased in the constant time range, average time intervals for sine, square, exponential, and simulated RE waves were $0.49{\pm}0.14,\;1.00{\pm}0.00,\;1.65{\pm}0.02,\;and\;1.66{\pm}0.02$ seconds, respectively. Average magnitudes of the decreased maximum temperatures in the time range were $0.45{\pm}0.15^{\circ}C$ for sine wave, $1.93{\pm}0.02^{\circ}C$ for square wave, $2.94{\pm}0.05^{\circ}C$ for exponential wave, and $1.53{\pm}0.06^{\circ}C$ for simulated RF wave. Volumes of temperature domain over $47^{\circ}C$ IT for sine, square, exponential, and simulated RF waves were 1480mm3, 1440mm3, 1380mm3, and 395mm3, respectively. Volumes inducing over 63% cell damage for sine, square, exponential, and simulated RF waves were 114mm3, 62mm3, 17mm3, and 0mm3, respectively. These results support that applying sine wave during RF ablation may be generally the most optimum in destructing effectively tumor tissues, compared with other RF patterns.

Ground response analysis of a standalone soil column model for IDA of piled foundation bridges

  • Hazem W. Tawadros;Mousa M. Farag;Sameh S.F. Mehanny
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Developing a competent soil-bridge interaction model for the seismic analysis of piled foundation bridges is of utmost importance for investigating the seismic response and assessing fragility of these lifeline structures. To this end, ground motion histories are deemed necessary at various depths along the piles supporting the bridge. This may be effectively accomplished through time history analysis of a free-field standalone soil column extending from bedrock level to ground surface subjected to an input bedrock motion at its base. A one-dimensional site/ground response analysis (vide one-directional shear wave propagation through the soil column) is hence conducted in the present research accounting for the nonlinear hysteretic behavior of the soil stratum encompassing the bridge piled foundation. Two homogeneous soil profiles atop of bedrock have been considered for comparison purposes, namely, loose and dense sand. Analysis of the standalone soil column has been performed under a set of ten selected actual bedrock ground motions adopting a nonlinear time domain approach in an incremental dynamic analysis framework. Amplified retrieved PGA and maximum soil shear strains have been generally observed at various depths of the soil column when moving away from bedrock towards ground surface especially at large hazards associated with high (input) PGA values assigned at bedrock. This has been accompanied, however, by some attenuation of the amplified PGA values at shallower depths and at ground surface especially for the loose sand soil and particularly for cases with higher seismic hazards associated with large scaling factors of bedrock records.

Risk evaluation of steel frames with welded connections under earthquake

  • Song, Jianlin;Ellingwood, Bruce R.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.663-672
    • /
    • 2001
  • Numerous failures in welded connections in steel moment-resisting building frames (SMRF) were observed when buildings were inspected after the 1994 Northridge Earthquake. These observations raised concerns about the effectiveness of such frames for resisting strong earthquake ground motions. The behavior of SMRFs during an earthquake must be assessed using nonlinear dynamic analysis, and such assessments must permit the deterioration in connection strength to capture the behavior of the frame. The uncertainties that underlie both structural and dynamic loading also need to be included in the analysis process. This paper describes the analysis of one of approximately 200 SMRFs that suffered damage to its welded beam-to-column connections from the Northridge Earthquake is evaluated. Nonlinear static and dynamic analysis of this SMRF in the time domain is performed using ground motions representing the Northridge Earthquake. Subsequently, a detailed uncertainty analysis is conducted for the building using an ensemble of earthquake ground motions. Probability distributions for deformation-related limit states, described in terms of maximum roof displacement or interstory drift, are constructed. Building fragilities that are useful for condition assessment of damaged building structures and for performance-based design are developed from these distributions.

Web Services Based Biological Data Analysis Tool

  • Kim, Min Kyung;Choi, Yo Hahn;Yoo, Seong Joon;Park, Hyun Seok
    • Genomics & Informatics
    • /
    • v.2 no.3
    • /
    • pp.142-146
    • /
    • 2004
  • Biological data and analysis tools are accumulated in distributed databases and web servers. For this reason, biologists who want to find information from the web should be aware of the various kinds of resources where it is located and how it is retrieved. Integrating the data from heterogeneous biological resources will enable biologists to discover new knowledge across the specific domain boundaries from sequences to expression, structure, and pathway. And inevitably biological databases contain noisy data. Therefore, consensus among databases will confirm the reliability of its contents. We have developed WeSAT that integrates distributed and heterogeneous biological databases and analysis tools, providing through Web Services protocols. In WeSAT, biologists are retrieved specific entries in SWISS-PROT/EMBL, PDB, and KEGG, which have annotated information about sequence, structure, and pathway. And further analysis is carried by integrated services for example homology search and multiple alignments. WeSAT makes it possible to retrieve real time updated data and analysis from the scattered databases in a single platform through Web Services.

The Study of harmonic peaks removal for modal analysis of Rolling tire (Rolling Tire 모드해석을 위한 회전주기성분제거에 대한 연구)

  • Choi, Jeong-Hyun;Lee, Sang-Ju;Park, Ju-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.409-412
    • /
    • 2005
  • Just as the vibration modes of a beam are dependent on its end constraints or boundary conditions. Vibration modes of a tire are dependent on its patch and spindle constraints. This dependence is key to understanding the dynamic properties of a tire and is apparent in various analytical and experimental investigations in the literature. One of the main task in a modal analysis is the measurement of the Frequency Response Function (FRFs). Because all the subsequent analysis is based on these FRFs, their quality is critically important in obtaining accurate modal parameter estimates. In rotating systems, FRFs are frequently contaminated by harmonic peaks related to such factors as imbalance, misalignment. This harmonic peaks appear in the FRFs as sharp spikes, which can be erroneously treated in modal curve-fitting procedures as structural modes. The harmonic peaks removal method is demonstrated by application to modal analysis on rotating tires. The results show substantial improvement in FRF quality.

  • PDF

Parametric Study of Numerical Prediction of Slamming and Whipping and an Experimental Validation for a 10,000-TEU Containership

  • Kim, Jung-Hyun;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.115-133
    • /
    • 2015
  • This paper describes an approach for the numerical analysis of container ship slamming and whipping and various parameters that influence slamming and whipping. For validation purposes, the numerical analysis results were compared with experimental results obtained as part of the Wave-Induced Loads on Ships Joint Industry Project. Water entry problems for two-dimensional (2D) sections were first solved using a 2D generalized Wagner model (GWM) for various drop conditions and geometries. As the next step, the hydroelastic numerical analysis of a 10,000-TEU container ship subjected to slamming and whipping loads in waves was performed. The analysis method used is based on a fully coupled model consisting of a three-dimensional (3D) Rankine panel model, a 3D finite element model (FEM), and a 2D GWM, which are strongly coupled in the time domain. Parametric studies were carried out in both numerical and experimental tests with various forward speeds, wave heights, and wave periods. The trends observed and the validity of the numerical analysis results are discussed.

CMP cross-correlation analysis of multi-channel surface-wave data

  • Hayashi Koichi;Suzuki Haruhiko
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we demonstrate that Common Mid-Point (CMP) cross-correlation gathers of multi-channel and multi-shot surface waves give accurate phase-velocity curves, and enable us to reconstruct two-dimensional (2D) velocity structures with high resolution. Data acquisition for CMP cross-correlation analysis is similar to acquisition for a 2D seismic reflection survey. Data processing seems similar to Common Depth-Point (CDP) analysis of 2D seismic reflection survey data, but differs in that the cross-correlation of the original waveform is calculated before making CMP gathers. Data processing in CMP cross-correlation analysis consists of the following four steps: First, cross-correlations are calculated for every pair of traces in each shot gather. Second, correlation traces having a common mid-point are gathered, and those traces that have equal spacing are stacked in the time domain. The resultant cross-correlation gathers resemble shot gathers and are referred to as CMP cross-correlation gathers. Third, a multi-channel analysis is applied to the CMP cross-correlation gathers for calculating phase velocities of surface waves. Finally, a 2D S-wave velocity profile is reconstructed through non-linear least squares inversion. Analyses of waveform data from numerical modelling and field observations indicate that the new method could greatly improve the accuracy and resolution of subsurface S-velocity structure, compared with conventional surface-wave methods.