• Title/Summary/Keyword: Time to collision

Search Result 1,096, Processing Time 0.029 seconds

Path Planning Method for an Autonomous Underwater Vehicle With Environmental Movement Congestions (환경이동혼잡조건을 고려한 자율무인잠수정의 이동경로생성 방법)

  • You, Sujeong;Kim, Ji Woong;Ji, Sang Hoon;Woo, Jongsik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • In order to make the underwater vehicle carry out the mission in a submarine environment, it is needed to plan a safe and efficient route to a given destination and prevent the autonomous submersible from colliding with obstacles while moving along the planned route. The function of collision avoidance makes the travel distance of the autonomous submersible longer. Moreover, it should move slowly near to obstacles against their moving disturbance. As a result, this invokes the degradation of the navigation efficiency in the process of collision avoidance. The side effect of the collision avoidance is not ignorable in the case of high congested environments such as the coast with many obstacles. In this paper, we suggest a path planning method which provides the route with minimum travel time considering collision avoidance in congested environment. For the purpose, we define environmental congestion map related to geometric information and obstacles. And we propose a method to consider the moving cost in the RRT scheme that provides the existing minimum distance path. We verified that the efficiency of our algorithm with simulation experiments.

Collision Avoidance Maneuver Planning Using GA for LEO and GEO Satellite Maintained in Keeping Area

  • Lee, Sang-Cherl;Kim, Hae-Dong;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.474-483
    • /
    • 2012
  • In this paper, a collision avoidance maneuver was sought for low Earth orbit (LEO) and geostationary Earth orbit (GEO) satellites maintained in a keeping area. A genetic algorithm was used to obtain both the maneuver start time and the delta-V to reduce the probability of collision with uncontrolled space objects or debris. Numerical simulations demonstrated the feasibility of the proposed algorithm for both LEO satellites and GEO satellites.

An Improvement of Bin-slotted Anti-collision Algorithm for Ubiquitous ID System

  • Kim Ji-Yoon;Kang Bong-Soo;Yang Doo-Yeong
    • International Journal of Contents
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2006
  • In this paper, an overview of anti-collision algorithm for RFID system of a standard EPC Class1 protocol is presented, and the binslotted dynamic search algorithm (BDS) based upon the slotted ALOHA and binary tree procedure is proposed and analyzed. Also, the performance is evaluated as comparing the BDS algorithm with the standard bin-slotted algorithm (BSA) through the simulation program. The performance of the proposed BDS algorithm is improved by dynamically identifying the collided-bit position and the collided bins stored in the stack of the reader. As the results, the number of request command that a reader send to tags in the reader s interrogation zone and the total recognition time are decreased to 59% as compared with BSA algorithm. Therefore, the tag identification performance is fairly improved by resolving a collision problem using the proposed BDS algorithm.

  • PDF

Moving Obstacles Collision Avoidance of a Mobile Robot using an Intelligent Network (지능형 네트워크를 이용한 이동 로봇의 이동장애물 회피 응용)

  • 박윤명;하달영;최부귀
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.64-70
    • /
    • 2002
  • This paper proposes a new construction method of neural networks. The construction method consists of two fundmental ideas, which are a parallel selection-style evaluation and rules evolution. A new collision avoidance algorithm using genetic and neural network is proposed to avoid moving obstacles such as mobile robots. The input parameters of this algorithm is position of moving obstacles and target. Output is a regenerated direction of mobile robot. This algorithm is very simple and so, it is available to application of real time process. The pattern of collision avoidance is learned through test execution.

  • PDF

Enhanced FFD-AABB Collision Algorithm for Deformable Objects

  • Jeon, JaeHong;Choi, Min-Hyung;Hong, Min
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.713-720
    • /
    • 2012
  • Unlike FEM (Finite Element Method), which provides an accurate deformation of soft objects, FFD (Free Form Deformation) based methods have been widely used for a quick and responsive representation of deformable objects in real-time applications such as computer games, animations, or simulations. The FFD-AABB (Free Form Deformation Axis Aligned Bounding Box) algorithm was also suggested to address the collision handling problems between deformable objects at an interactive rate. This paper proposes an enhanced FFD-AABB algorithm to improve the frame rate of simulation by adding the bounding sphere based collision test between 3D deformable objects. We provide a comparative analysis with previous methods and the result of proposed method shows about an 85% performance improvement.

Numerical experiment on driftwood dynamics considering rootwad effect and wood collision

  • Kang, Taeun;Kimura, Ichiro;Onda, Shinichiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.267-267
    • /
    • 2019
  • Driftwood is one of serious problems in a river environment. In several countries, such as Indonesia, Japan, and Italy, the driftwood frequently appears in a river basin, and it can alter the channel bed, flow configuration by wood deposition and jam formation. Therefore, the studies related to driftwood have been actively conducted by many researchers to understand the mechanism of driftwood dynamics. In particular, wood motion by collision is one of the difficult issues in the numerical simulation because the calculation for wood collision requires significantly expensive calculation time due to small time step. Thus, this study conducted the numerical simulation in consideration of the wood motion by water flow and wood collision to understand the wood dynamics in terms of computation. We used the 2D (two-dimensional) depth-averaged velocity model, Nays2DH, which is a Eulerian model to calculate the water flow on the generalized coordinate. A Lagrangian type driftwood model, which expresses the driftwood as connected sphere shape particles, was employed to Nays2DH. In addition, the present study considered root wad effect by using larger diameter for a particle at a head of driftwood. An anisotropic bed friction was considered for the sliding motion dependent on stemwise, streamwise and motion directions. We particularly considered changeable draft at each particle and projection area by an angle between stemwise and flow directions to precisely reproduce the wood motions. The simulation results were compared with experimental results to verify the model. As a result, the simulation results showed good agreement with experimental results. Through this study, it would be expected that this model is a useful tool to predict the driftwood effect in the river flow.

  • PDF

A Study on Prevention of Collision and Data Loss of the RFID System Using a Full-Length Instruction Code Method (무선인식 시스템의 완전 명령 코드 기법을 이용한 데이터 충돌 및 손실 방지에 관한 연구)

  • 강민수;신석균;이재호;박면규;이기서
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.756-765
    • /
    • 2004
  • Using single carrier frequency RFID system in one-to-multiple wireless communications, might be generated data loss because of data collisions. Conventional Anti-collision method prevent data loss from data collisions which are binary tree method and ALOHA. However, those two preventive measures also have week points which are strongly dependent on the time and space when passing through the recognition area. This paper suggests the full-length instruction code method which fits in to half-duplex method, prevents data collision effectively by calculating the non-transmitting time of multiple tags considering approaching time to the recognition area. After full-length instruction code method test using 13.56MHz bandwidth RFID system shows that full-length instruction code method could make better result than any other methods. Moreover, the record shows O(n) result after analyzing O-notation of conventional time-domain procedure.

Fast Retransmission Scheme for Overcoming Hidden Node Problem in IEEE 802.11 Networks

  • Jeon, Jung-Hwi;Kim, Chul-Min;Lee, Ki-Seok;Kim, Chee-Ha
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.324-330
    • /
    • 2011
  • To avoid collisions, IEEE 802.11 medium access control (MAC) uses predetermined inter-frame spaces and the random back-off process. However, the retransmission strategy of IEEE 802.11 MAC results in considerable time wastage. The hidden node problem is well known in wireless networks; it aggravates the consequences of time wastage for retransmission. Many collision prevention and recovery approaches have been proposed to solve the hidden node problem, but all of them have complex control overhead. In this paper, we propose a fast retransmission scheme as a recovery approach. The proposed scheme identifies collisions caused by hidden nodes and then allows retransmission without collision. Analysis and simulations show that the proposed scheme has greater throughput than request-to-send and clear-to-send (RTS/CTS) and a shorter average waiting time.

Minimum-Time Trajectory Planning Ensuring Collision-Free Motions for Two Robots with Geometric Path Constraints (공간상의 길이 주어진 두 대의 로보트를 위한 최소시간 충돌회피 경로 계획)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.357-368
    • /
    • 1991
  • Collision-free trajectory planning for two robots is considered. The two robot system handled in the paper is given specified geometric paths for two robots, and the task is repeating. Then, the robot dynamics is transformed as a function of the traveled lengths along the paths, and the bounds on acceleration and velocity are described in the phase plane be taking the constraints on torques and joint velocities into consideration. Collision avoidance and time optimality are considered simultaneously in the coordination space and the phase plane, respectively. The proof for the optimality of the proposed algorithm is given, and a simulation result is included to show the usefulness of the proposed method.

  • PDF

Structure Analysis of $BaTiO_3$ Film on the MgO(001) Surface by Time-Of-Flight Impact-Collision Ion Scattering Spectroscopy

  • Yeon Hwang;Lee, Tae-Kun;Ryutaro Souda
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.17-17
    • /
    • 2002
  • Time-of-flight impact collision ion scattering spectroscopy (TOF-ICISS) was applied to study the geometrical structure of the epitaxially grown BaTiO₃ layers on the MgO(100) surface. Hetero-epitaxial BaTiO₃ layers can be deposited by the following steps: first thermal evaporation of titanium onto the MgO(100) surface in the atmosphere of oxygen at 400℃, secondly thermal evaporation of barium in the same manner, and finally annealing at 800℃. Well ordered perovskite BaTiO₃ was confirmed from the ICISS spectra and reflection high electron energy diffraction (RHEED) patterns. It was also revealed that BaTiO₃ had cubic structure with the same lattice parameter of bulk phase.

  • PDF