• Title/Summary/Keyword: Time to collision

Search Result 1,096, Processing Time 0.035 seconds

A Study on the Threshold of Avoidance Time in the New Evaluation of Collision Risk

  • Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.619-624
    • /
    • 2003
  • Evaluating the risk of collision quantitatively plays a key role in developing the expert system of navigation and collision avoidance. This study analysed thoroughly how to determine the threshold function related to the avoidance time as described in the new evaluation of collision risk using sech function, and developed the appropriate equation as applicable.

On-line Motion Planner for Multi-Agents based on Real-Time Collision Prognosis

  • Ji, Sang-Hoon;Kim, Ji-Min;Lee, Beom-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.74-79
    • /
    • 2005
  • In this paper, we propose a novel approach to decentralized motion planning and conflict-resolution for multiple mobile agents working in an environment with unexpected moving obstacles. Our proposed motion planner has two characteristics. One is a real-time collision prognosis based on modified collision map. Collision map is a famous centralized motion planner with low computation load, and the collision prognosis hands over these characteristics. And the collision prognosis is based on current robots status, maximum robot speeds, maximum robot accelerations, and path information produced from off-line path planning procedure, so it is applicable to motion planner for multiple agents in a dynamic environment. The other characteristic is that motion controller architecture is based on potential field method, which is capable of integrating robot guidance to the goals with collision avoidance. For the architecture, we define virtual obstacles making delay time for collision avoidance from the real-time collision prognosis. Finally the results obtained from realistic simulation of a multi-robot environment with unknown moving obstacles demonstrate safety and efficiency of the proposed method.

  • PDF

Study on the Selection Criteria of 3D Collision Detection Model (3D 충돌 검출 모델의 선정 기준에 관한 연구)

  • Kang, Yun-Mi;Park, Young-B.
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.253-259
    • /
    • 2003
  • In a good 3D engine, objects interactions are similar to those of real-world. Collision is one of the interactions. It includes whether collision took place or not, where collision took placed, and reaction after collision took place. More precise collision detection needs more time. If there exist required precision, detection time can be controlled by choosing appropriate detection model. Therefore, we need a selection mechanism for the collision detection with respect to required precision and detection time. In this paper, a collision detection model with seven different precision levels is examined. And relationship between detection time and precision is analyzed. Consequently, we propose a selection mechanism for collision detection model.

  • PDF

Development of a Frontal Collision Detection Algorithm Using Laser Scanners (레이져 스캐너를 이용한 전방 충돌 예측 알고리즘 개발)

  • Lee, Dong-Hwi;Han, Kwang-Jin;Cho, Sang-Min;Kim, Yong-Sun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.113-118
    • /
    • 2012
  • Collision detection plays a key role in collision mitigation system. The malfunction of the collision mitigation system can result in another dangerous situation or unexpected feeling to driver and passenger. To prevent this situation, the collision time, offset, and collision decision should be determined from the appropriate collision detection algorithm. This study focuses on a method to determine the time to collision (TTC) and frontal offset (FO) between the ego vehicle and the target object. The path prediction method using the ego vehicle information is proposed to improve the accuracy of TTC and FO. The path prediction method utilizes the ego vehicle motion data for better prediction performance. The proposed algorithm is developed based on laser scanner. The performance of the proposed detection algorithm is validated in simulations and experiments.

A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

  • You, Youngjun;Rhee, Key-Pyo;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.188-198
    • /
    • 2013
  • In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

Collision-Free Motion Planning of a Robot Using Free Arc concept (프리아크 개념을 이용한 로봇의 충돌회피 동작 계획)

  • Lee, Seok-Won;Nam, Yun-Seok;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.317-328
    • /
    • 2000
  • This paper presents an effective approach to collision-free motion planning of a robot in the work-space including time-varying obstacles. The free arc is defined as a set composed of the configuration points of the robot satisfying collision-free motion constraint at each sampling time. We represent this free arc with respect to the new coordinate frame centered at the goal configuration and there for the collision-free path satisfying motion constraint is obtained by connecting the configuration points of the free arc at each sampling mined from the sequence of free arcs the optimality is determined by the performance index. Therefore the complicated collision-free motion planning problem of a robot is transformed to a simplified SUB_Optimal Collision Avoidance Problem(SOCAP). We analyze the completeness of the proposed approach and show that it is partly guaranteed using the backward motion. Computational complexity of our approach is analyzed theoretically and practical computation time is compared with that of the other method. Simulation results for two cally and practical computation time is compared with that of the other method. Simulation results for two SCARA robot manipulators are presented to verify the efficacy of the proposed method.

  • PDF

A Probabilistic Algorithm for Multi-aircraft Collision Detection and Resolution in 3-D

  • Kim, Kwang-Yeon;Park, Jung-Woo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This paper presents a real-time algorithm for collision detection, collision avoidance and guidance. Three-dimensional point-mass aircraft models are used. For collision detection, conflict probability is calculated by using the Monte-Carlo Simulation. Time at the closest point of approach(CPA) and distance at CPA are needed to determine the collision probability, being compared to certain threshold values. For collision avoidance, one of possible maneuver options is chosen to minimize the collision probability. For guidance to a designated way-point, proportional navigation guidance law is used. Two scenarios on encounter situation are studied to demonstrate the performance of proposed algorithm.

Time-Varying Joint Constraint Map Using View Time Concept and Its Use on the Collision Avoidance of Two Robots (View Time 개념을 이용한 지변 조인트 제한 지도(JCM) 상에서의 두 로보트의 충돌 회피에 관한 연구)

  • 남윤석;이범희;고명삼;고낙용
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1770-1781
    • /
    • 1989
  • Two robots working in a common workspace may collide with each other. In this paper, a collision-free motion planning algorithm using view time concept is proposed to detect and avoid collision before robot motion. Collision may occur not only at the robot end effector but also at robot links. To detect and avoid potential collisions, the trajectory of the first robot is sampled periodically at every view time and the region in Cartesian space swept by the first robot is viewed as an obstacle during a single sampling period. The forbidden region in the joint constraint map (JCM). The JCM's are obtained in this way at every view time. An algorithm is established for collision-free motion planning of the two robot system from the sequence of JCM's and it is verified by simulations.

  • PDF

A New Analytical Representation to Robot Path Generation with Collision Avoidance through the Use of the Collision Map

  • Park Seung-Hwan;Lee Beom-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.77-86
    • /
    • 2006
  • A new method in robot path generation is presented using an analysis of the characteristics of multi-robot collision avoidance. The research is based on the concept of the collision map, where the collision between two robots is presented by a collision region and a crossing curve TLVSTC (traveled length versus servo time curve). Analytic collision avoidance is considered by translating the collision region in the collision map. The 4 different translations of collision regions correspond to the 4 parallel movements of the actual original robot path in the real world. This analysis is applied to path modifications where the analysis of collision characteristics is crucial and the resultant path for collision avoidance is generated. Also, the correlations between the translations of the collision region and robot paths are clarified by analyzing the collision/non-collision areas. The influence of the changes of robot velocity is investigated analytically in view of collision avoidance as an example.

Bitwise Collision Attack Based on Second-Order Distance

  • Wang, Danhui;Wang, An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1802-1819
    • /
    • 2017
  • Correlation-enhanced collision attack has been proposed by Moradi et al. for several years. However, in practical operations, this method costs lots of time on trace acquisition, storage and averaging due to its bytewise collision detection. In this paper, we propose a bitwise collision attack based on second-order distance model. In this method, only 9 average traces are enough to finish a collision attack. Furthermore, two candidate models are given in this study to distinguish collisions, and the corresponding practical experiments are also performed. The experimental results indicate that the operation time of our attack is only 8% of that of correlation-enhanced collision attack, when the two success rates are both above 0.9.