• Title/Summary/Keyword: Time slice

Search Result 239, Processing Time 0.028 seconds

A Constrained Simplex Method for Slope Stability Analysis (사면안정해석에 대한 Constrained Simplex Method 적용)

  • Hwang, Jea An;Lee, Sang Duk;Jeon, Mong Gag;Koo, Ja Kap
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.209-215
    • /
    • 1993
  • A stability analysis program(CSLOP) which can obtain the factor of safety and the critical failure surface at the same time is developed from this study. In order to improve existing slice methods, the general slice method of Gussmann is applied to compute the factor of safety, and the constrained simplex algorithm proposed by Box is applied to systematically locate the critical failure surface in slopes. The proposed method is applied to two examples of circular and noncircular slope stability and the results are compared to previously published solutions. Constrained simplex method is recommended to improve slope stability programs which provide for an automatic search of the critical failure mechanisms.

  • PDF

Tile, Slice, and Deblocking Filter Parallelization Method in HEVC (HEVC 복호기에서의 타일, 슬라이스, 디블록킹 필터 병렬화 방법)

  • Son, Sohee;Baek, Aram;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.484-495
    • /
    • 2017
  • The development of display devices and the increase of network transmission bandwidth bring demands for over 2K high resolution video such as panorama video, 4K ultra-high definition commercial broadcasting, and ultra-wide viewing video. To compress these image sequences with significant amount of data, High Efficiency Video Coding (HEVC) standard with the highest coding efficiency is a promising solution. HEVC, the latest video coding standard, provides high encoding efficiency using various advanced encoding tools, but it also requires significant amounts of computation complexity compared to previous coding standards. In particular, the complexity of HEVC decoding process is a imposing challenges on real-time playback of ultra-high resolution video. To accelerate the HEVC decoding process for ultra high resolution video, this paper introduces a data-level parallel video decoding method using slice and/or tile supported by HEVC. Moreover, deblocking filter process is further parallelized. The proposed method distributes independent decoding operations of each tile and/or each slice to multiple threads as well as deblocking filter operations. The experimental results show that the proposed method facilitates executions up to 2.0 times faster than the HEVC reference software for 4K videos.

Slope Stability Analysis by Slice Method and Finite Difference Method- A Comparative Study - (절편법과 유한차분법에 의한 사면안정해석 비교연구)

  • 박연준;채영수;유광호;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.263-272
    • /
    • 1999
  • Slice method is commonly used in solving slope stability problems since it is easy to use and its computation time is rather short. But depending upon the assumptions on the inter-slice forces, different methods are available. Quite often the difference between methods are so big that it is very difficult to make engineering decisions. This paper describes a method to calculate the factor of safety of a slope using FLAC, a finite difference based program. A FISH routine is developed to calculate the factor of safety, and verified by comparing with Chen's limit equilibrium solution. An example problem was selected from Fredlund and Krhan's paper, and results were compared for different soil and water conditions. The difference was less than 0.01 when the soil is homogeneous, and less than 5 % when a weak layer is embedded. Since most geotechnical application programs are capable of considering complicated ground conditions as well as the effect of ground supports, numerical methods are believed to be very useful in making engineering decisions. The developed routine can be applied to the calculation of the factor of safety of jointed rock slopes or weathered rock slopes where the use of slice method is limited.

  • PDF

Consideration of the Effect of Artifact during the Image Guided Radiation Therapy Using the Fiducial Marker (영상 유도 방사선치료 시 Fiducial Marker의 Artifact에 관한 연구)

  • Kim, Jong-Min;Kim, Dae-Sup;Back, Geum-Mun;Kang, Tae-Yeong;Hong, Dong-Ki;Yun, Hwa-Yong;Kwon, Kyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Purpose: The effect of artifact was analyzed, which occurs from fiducial marker during the liver Image Guided Radiation Therapy (IGRT) using the fiducial marker. Materials and Methods: The size of artifact of fixed fiducial marker and length of mobile fiducial marker locus were measured using the On-Board Imager system (OBI) and CT simulator, and 2D-2D matching and 3D-3D matching were carried out, respectively, and at this time, the coordinates transition value of couch was analyzed. Results: The measurement of fixed fiducial marker artifact size indicated CT 4.90, 8.10, 12.90, 19.70 mm and OBI 5.60, 10.60, 14.70, 29.40 mm based on the reference CT slice thickness of 1.25, 2.50, 5.00, and 10.00 mm. Meanwhile, the measurement of mobile fiducial marker locus length indicated CT 42.00, 43.10, 46.50 mm, and OBI 43.40, 46.00, 49.30 mm. The coordinates transition of 1.00, 2.00, and 8.00 mm occurred between 2D-2D matching and 3D-3D matching. Conclusion: It was confirmed that the therapy error increased during IGRT due to the influence of artifact when CT slice thickness increased. Thus, it may be desirable to acquire the image less than 2.50 mm in slice thickness when IGRT is implemented using the fiducial marker.

  • PDF

Evaluation of Microbiological, Physicochemical, and Sensory Characteristics of Korean Slice Beef Jerky (한국형 슬라이스 우육포의 미생물학적, 이화학적 및 관능적 품질특성 평가)

  • Kim, Hyoun-Wook;Lee, Eun-Kyung;Han, Doo-Jeong;Choi, Ji-Hun;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.27 no.1
    • /
    • pp.42-46
    • /
    • 2007
  • We evaluated the microbial safety and quality characteristics of Korean slice beef jerky, and investigated these properties over 28-day and 90-day storage periods at room temperature ($25^{\circ}C$) and elevated temperature ($35^{\circ}C$). After microbial counts of all samples, mesophilic bacteria were detected at 1.23 Log CFU/g at day 0. Counts of mesophilic bacteria did not change significantly in all samples, and coliforms and Bacillus cereus were not detected in all samples during storage at either $25^{\circ}C$ or $35^{\circ}C$. TBA values, Aw, and pH were investigated. The Aw of korean slice beef jerky stored at room temperature was 0.71 at day 0, and was reduced to 0.61 after 90 days. The TBA value increased as storage time increased, and its TBA value was 0.48 after 90 days of storage. The pH of all samples did not change significantly. At $35^{\circ}C$ storage, TBA values, Aw, pH were not significantly different than those stored at $25^{\circ}C$. Also, the sensory properties of all samples were not significantly different between two storage temperatures. In conclusion, these results suggest Koran slice beef jerky ould be used as basic study for development of the commercial beef jerky.

Filtering-Based Method and Hardware Architecture for Drivable Area Detection in Road Environment Including Vegetation (초목을 포함한 도로 환경에서 주행 가능 영역 검출을 위한 필터링 기반 방법 및 하드웨어 구조)

  • Kim, Younghyeon;Ha, Jiseok;Choi, Cheol-Ho;Moon, Byungin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Drivable area detection, one of the main functions of advanced driver assistance systems, means detecting an area where a vehicle can safely drive. The drivable area detection is closely related to the safety of the driver and it requires high accuracy with real-time operation. To satisfy these conditions, V-disparity-based method is widely used to detect a drivable area by calculating the road disparity value in each row of an image. However, the V-disparity-based method can falsely detect a non-road area as a road when the disparity value is not accurate or the disparity value of the object is equal to the disparity value of the road. In a road environment including vegetation, such as a highway and a country road, the vegetation area may be falsely detected as the drivable area because the disparity characteristics of the vegetation are similar to those of the road. Therefore, this paper proposes a drivable area detection method and hardware architecture with a high accuracy in road environments including vegetation areas by reducing the number of false detections caused by V-disparity characteristic. When 289 images provided by KITTI road dataset are used to evaluate the road detection performance of the proposed method, it shows an accuracy of 90.12% and a recall of 97.96%. In addition, when the proposed hardware architecture is implemented on the FPGA platform, it uses 8925 slice registers and 7066 slice LUTs.

Advanced Program-to-Program Communication (APPC) 기능 분석

  • Lee, Mi-Seon;Nam, Sang-Woo;Son, Jin-Woo
    • Electronics and Telecommunications Trends
    • /
    • v.5 no.4
    • /
    • pp.120-133
    • /
    • 1990
  • APPC는 프로그램과 프로그램 사이의 통신을 위해 1982년 IBM에 의해 소개되었다. APPC의 구조적인 기초는 logical unit 6.2이다. 두 사용자가 서로 통신을 하려면 먼저 LU 사이의 세션(session)이 이루어져야 한다. LU 6.2에서의 기본은 conversation 개념이다. conversation은 통신하는 두 프로그램 사이의 연결로 두개의 통신하는 프로그램을 대표하는 두 LU 사이의 세션을 이용한다. conversation은 세션의 serial time slice이다.

A MICROPROCESSOR-BASED INTERPOLATOR

  • Lee, B.J.;Nho, T.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.2
    • /
    • pp.69-74
    • /
    • 1984
  • In this paper we present a microprocessor-based interpolator using algebraic arithmetic method. The interpolator consists of 2910 "bit-slice" microprocessor chips and 0.5K ROMs of microprogram memory. The system design is an instruction-data-based architecture with 250ns cycle time. A significant feature of the interpolator is that it has flexibility, very fast interpolatioon speed of (max) 250K pulses/sec, and performs additional functions simultaneously. Throughout the paper detailed explanations are given as to how one can design the hardware and software of the interpolator efficently. In addi- tion to hardware and software design, experimental results are pressented.ressented.

  • PDF

A Microprocessor-Based Interpolator (마이크로프로세서를 이\ulcorner나 인터폴레이)

  • 여인택;노태석;이봉진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.2
    • /
    • pp.62-69
    • /
    • 1984
  • In this paper we present a microprocessor-based interpolator using algebraic arithmetic method. The interpolator consists of 2900 "bit-slice" microprocessor chips and 0.5K ROMs of 36-bit microprogram memory. The system design is an instuction-data-based architecture with 250ns cycle time. A significant feature of the interpolator is that it has flexibility, very fast interpolation speed of 250 K pulses/sec, and performs additional functions simultaneously. Throughout the paper detailed explanations are given as to how one can design the hardware and software, and experimental results are presented.presented.

  • PDF

Quantitative Evaluation of the Accuracy of 3D Imaging with Multi-Detector Computed Tomography Using Human Skull Phantom (두개골 팬텀을 이용한 다검출기 CT 3차원 영상에서의 거리측정을 통한 정량적 영상특성 평가)

  • 김동욱;정해조;김새롬;유영일;김기덕;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.131-140
    • /
    • 2003
  • As the importance of accuracy in measurings of 3-D anatomical structures continues to be stressed, an objective and quantitative of assessing image quality and accuracy of 3-D volume-rendered images is required. The purpose of this study was to evaluate the quantitative accuracy of 3-D rendered images obtained with MDCT, scanned at various scanning parameters (scan modes, slice thicknesses and reconstruction slice thickness). Twelve clinically significant points that play an important role for the craniofacial bone in plastic surgery and dentistry were marked on the surface of a dry human skull. The direct distances between the reference points were defined as gold standards to assess the measuring errors of 3-D images. Then, we scanned the specimen with acquisition parameters of 300 mA, In kVp, and 1.0 sec scan time in axial and helical scan modes (pitch 3:1 and 6:1) at 1,25 mm, 2.50 mm, 3.75 mm and 5.00 mm slice thicknesses. We performed 3-D visualizations and distance measurements with volumetric analysis software and statistically evaluated the quantitative accuracy of distance measurements. The accuracy of distance measurements on the 3-D images acquired with 1.25, 2.50, 3,75 and 5.00 mm slice thickness were 48%, 33%, 23%, 14%, respectively, and those of the reconstructed 1.25 mm were 53%, 41%, 43%, 36% respectively. Meanwhile, there were insignificant statistical differences (P-value<0.05) in the accuracy of the distance measurements of 3-D images reconstructed with 1.25 mm thickness. In conclusion, slice thickness, rather than scan mode, influenced the quantitative accuracy of distance measurements in 3-D rendered images with MDCT. The quantitative analysis of distance measurements may be a useful tool for evaluating the accuracy of 3-D rendered images used in diagnosis, surgical planning, and radiotherapeutic treatment.

  • PDF