• 제목/요약/키워드: Time series NDVI

검색결과 79건 처리시간 0.029초

PHENOLOGICAL ANALYSIS OF NDVI TIME-SERIES DATA ACCORDING TO VEGETATION TYPES USING THE HANTS ALGORITHM

  • Huh, Yong;Yu, Ki-Yun;Kim, Yong-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.329-332
    • /
    • 2007
  • Annual vegetation growth patterns are determined by the intrinsic phenological characteristics of each land cover types. So, if typical growth patterns of each land cover types are well-estimated, and a NDVI time-series data of a certain area is compared to those estimated patterns, we can implement more advanced analyses such as a land surface-type classification or a land surface type change detection. In this study, we utilized Terra MODIS NDVI 250m data and compressed full annual NDVI time series data into several indices using the Harmonic Analysis of Time Series(HANTS) algorithm which extracts the most significant frequencies expected to be presented in the original NDVI time-series data. Then, we found these frequencies patterns, described by amplitude and phase data, were significantly different from each other according to vegetation types and these could be used for land cover classification. However, in spite of the capabilities of the HANTS algorithm for detecting and interpolating cloud-contaminated NDVI values, some distorted NDVI pixels of June, July and August, as well as the long rainy season in Korea, are not properly corrected. In particular, in the case of two or three successive NDVI time-series data, which are severely affected by clouds, the HANTS algorithm outputted wrong results.

  • PDF

MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론 (Method of Monitoring Forest Vegetation Change based on Change of MODIS NDVI Time Series Pattern)

  • 정명희;이상훈;장은미;홍성욱
    • Spatial Information Research
    • /
    • 제20권4호
    • /
    • pp.47-55
    • /
    • 2012
  • 정규식생지수(NDVI)는 식생자원을 모니터링할 수 있도록 설계된 식생지수(VI-Vegetation Index) 중 하나로 여러 응용 분야에서 가장 많이 사용되고 있는 지수이다. 산림 분야에서도 NDVI가 많이 활용되고 있는데 본 논문에서는 산림 변화 모니터링을 위해 MODIS NDVI를 활용하는 방법론이 연구되었다. 특정 시점을 기준으로 NDVI 값을 비교 및 분류하여 변화를 탐지하는 방법은 기계나 기상상태의 영향으로 자료의 정확성이 떨어질 수 있고 장기적인 변화를 탐지하는데도 어려움이 있다. 이러한 점을 고려하여 본 논문에서는 하모닉 모형을 이용하여 NDVI 시계열 자료를 통해 NDVI 패턴을 고려하는 방법론을 제시하였다. 먼저 하모닉 모형을 적용하여 미관측 자료나 자료의 오류를 보정한 NDVI 시계열 자료를 재구축하고 추정된 하모닉 요소의 모수를 기준으로 장기적 패턴을 통해 식생의 변화를 모니터링할 수 있다. 제안된 방법은 한반도 지역의 2009년 8월 21일부터 2011년 9월 6일까지 총 49개의 MODIS NDVI 시계열 자료에 적용하여 모형의 유용성을 입증하였다.

MODIS NDVI 시계열 자료의 하모닉 분석을 통한 지표 식생 변화 탐지 (Land-Cover Vegetation Change Detection based on Harmonic Analysis of MODIS NDVI Time Series Data)

  • 정명희;장은미
    • 대한원격탐사학회지
    • /
    • 제29권4호
    • /
    • pp.351-360
    • /
    • 2013
  • MODIS NDVI 시계열 자료에 하모닉 분석을 적용하면 계절에 따른 식생의 연간 변화 패턴을 이해할 수 있다. 하모닉 분석은 시간에 따라 형성된 시계열 자료의 복잡한 파형의 형태를 일련의 정현파 파형(sinusoidal waves)의 합으로 분해하고 진폭과 위상으로 정의되는 각 파형의 특성을 통해 시계열 자료의 패턴을 분석하는 방법이다. 본 논문은 NDVI 시계열 자료에 하모닉 모형을 적용하여 각 구성 성분의 진폭과 위상을 측정하고 이러한 파라미터들의 변화를 분류하여 식생의 연간 변화를 탐지하는 방법론을 제안하고 있다. 이를 통해 장기간에 걸친 식생 변화 지역을 모니터링할 수 있고 또한, 이 과정에서 하모닉 모형을 통해 미관측 자료나 노이즈 자료를 복원하여 시계열자료를 재구축할 수 있는 장점도 있다. 본 연구에서는 시뮬레이션 자료를 통해 하모닉 분석의 유용성에 대해 테스트하였고, 2006년부터 2012년까지 총 7년간 북한 개마고원 부근의 MODIS NDVI 식생 자료에 하모닉 모형을 적용하여 연간 변화 지역을 탐지하고 연간 식생변화지역맵을 작성하였다. 이렇게 작성된 연간 식생변화지역맵은 장기적인 식생변화 모니터링을 위한 기초 맵으로 활용될 수 있을 것으로 기대된다.

지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축 (Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제25권2호
    • /
    • pp.95-105
    • /
    • 2009
  • 지상 관측으로부터 수집된 시계열 원격탐사 자료는 관측환경의 악화와 감지 시스템의 기계적 고장과 같은 관측 장애요인에 의해 많은 미관측 및 악성 자료를 가지게 된다. 육상의 지표면 parameters는 기후와 주로 연관되어 있으므로 육상 관측 위성 영상에 나타나는 많은 물리적 과정은 계절 주기에 따른 시간적 변화를 보인다. 본 연구에서 제안된 적응 feedback 시스템은 계절에 따라 변하는 물리적 과정을 포함하는 시계열 원격 탐사 영상 시리즈를 재구축한다. 이 시스템에서는 계절적 변화를 추적하기 위하여 하모닉 모형을 사용하고 수치 영상 모형의 공간적 의존성을 나타내기 위해 Gibbs Random Field를 사용한다. 재구축 과정을 통하여 구성된 적응 하모닉 모형을 사용하여 지표면 연속적 변화를 감시할 수 있다. 본 연구에서는 1996년부터 2000년까지 한반도로부터 관측된 AVHRR 영상 시리즈를 일 주일 간격으로 정적 합성하여 NDVI 시리즈를 구하고 하모닉 모형을 사용하는 적응 재구축 시스템을 이 NDVI 시리즈에 적용하여 한반도 식생 변화를 추적하였다. 연구 결과는 하모닉 적응 재구축 시스템이 실시간 지표면 변화 감시를 하는데 매우 효과적인 수단이 될 것이라는 잠재성을 보여준다.

Vegetation Classification from Time Series NOAA/AVHRR Data

  • Yasuoka, Yoshifumi;Nakagawa, Ai;Kokubu, Keiko;Pahari, Krishna;Sugita, Mikio;Tamura, Masayuki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.429-432
    • /
    • 1999
  • Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.

  • PDF

조화 분석을 이용한 식생지수 보정 기법에 관한 연구 (NDVI Noise Interpolation Using Harmonic Analysis)

  • 박수재;한경수;피경진
    • 대한원격탐사학회지
    • /
    • 제26권4호
    • /
    • pp.403-410
    • /
    • 2010
  • NDVI(Normalized Difference Vegetation Index)는 기후 변화 모니터링과 식생 변화 탐지 모니터링을 위한 주요한 지표이며 주로 단일 기간 합성 자료 형태로 널리 활용되고 있다. 원격탐사 된 식생지수 자료는 전처리 과정을 거치게 되지만 제거되지 못한 cloud pixel, 대기 효과, 지면의 상태 등으로 인하여 NDVI 값이 저평가(low peak)되는 noise가 발생하게 된다. 이러한 문제점을 해결하기 위해 국내 외 연구가 활발히 진행되고 있으며 최근 높은 값(high peak)을 추적하는 방법인 다중 다항 회귀식을 이용하여 noise를 보정하는 방법이 개발되었으나 부분적으로 참값보다 과대 평가되는 문제점이 있다. 따라서 본 연구에서는 과대 평가되는 문제점을 해결하고자 조화 분석을 이용하여 low peak 탐지 후 보간하는 종합적인 기법을 개발하였다. 이를 검증하기 위해 SPOT/VGT NDVI 10-day MVC 자료를 이용하여 다중 다항 회귀식을 이용한 방법과의 비교 분석을 수행한 결과 전반적인 식생 지수의 시계열 특성이 잘 나타났고 NDVI 실제 값(raw value)을 보다 현실적으로 재생산하여 조화 분석을 이용한 방법이 더 우수한 것으로 판단된다.

MODIS NDVI 시계열 자료의 통계적 특성에 기반한 NDVI 데이터 잡음 제거 방법 (A noise reduction method for MODIS NDVI time series data based on statistical properties of NDVI temporal dynamics)

  • 정명희;장석우
    • 한국산학기술학회논문지
    • /
    • 제18권9호
    • /
    • pp.24-33
    • /
    • 2017
  • Multitemporal MODIS 식생 지수 (VI) 자료는 식생 활동의 프로파일을 제공하기 때문에 환경 및 기후 변화에 대한 식생 모니터링 연구에 널리 사용되고 있다. 그러나 MODIS 데이터에는 구름이나 대기 변동성 및 계측기 문제로 인해 노이즈가 발생하여 NDVI 시계열 데이터 분석과 애플리케이션 응용에 있어서 자료 정확성에 문제가 생기게 된다. 이러한 이유로, NDVI 자료를 이용한 VI 분석을 위해서는 잡음을 줄이고 고품질의 시계열 데이터 스트림을 재구성하기위한 전 처리가 필요하다. 본 연구에서는 NDVI 시계열 자료의 통계적 특성을 기반으로 불량 데이터 또는 미관측 데이터를 복원하기 위해 MODIS NDVI에 대한 데이터 재구성 방법을 제안하고 있다. 데이터 스트림 함수의 속성을 검사하면 급격한 증가나 감소와 같은 비정상적인 변화를 감지 할 수 있다. 본 연구에 제안하고 있는 방법은 정상적인 자료의 세부적 특징은 그대로 유지하면서 노이즈 자료만 수정하는 방향으로 자료를 복원할 수 있다. 제안된 기법은 시뮬레이션 데이터와 2006년부터 2012년까지의 북한지역 백두산을 대상으로 NDVI 시계열 자료를 사용하여 테스트하였고 시뮬레이션 테스트에서는 기존 wavelet이나 Gaussian 방법에 비해 본 방법이 에러율을 평균 70% 이상 줄일 수 있어 제안된 방법이 노이스가 있는 시계열 자료의 데이터 재구성에 있어 효과적임을 입증하였다.

NDVI time series analysis over central China and Mongolia

  • Park, Youn-Young;Lee, Ga-Lam;Yeom, Jong-Min;Lee, Chang-Suk;Han, Kyung-Soo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.224-227
    • /
    • 2008
  • Land cover and its changes, affecting multiple aspects of the environmental system such as energy balance, biogeochemical cycles, hydrological cycles and the climate system, are regarded as critical elements in global change studies. Especially in arid and semiarid regions, the observation of ecosystem that is sensitive to climate change can improve an understanding of the relationships between climate and ecosystem dynamics. The purpose of this research is analyzing the ecosystem surrounding the Gobi desert in North Asia quantitatively as well as qualitatively more concretely. We used Normalized Difference Vegetation Index (NDVI) derived from SPOT-VEGETATION (VGT) sensor during 1999${\sim}$2007. Ecosystem monitoring of this area is necessary because it is a hot spot in global environment change. This study will allow predicting areas, which are prone to the rapid environmental change. Eight classes were classified and compare with MODerate resolution Imaging Spectrometer (MODIS) global land cover. The time-series analysis was carried out for these 8 classes. Class-1 and -2 have least amplitude variation with low NDVI as barren areas, while other vegetated classes increase in May and decrease in October (maximum value occurs in July and August). Although the several classes have the similar features of NDVI time-series, we detected a slight difference of inter-annual variation among these classes.

  • PDF

Time Series Analysis of SPOT VEGETATION Instrument Data for Identifying Agricultural Pattern of Irrigated and Non-irrigated Rice cultivation in Suphanburi Province, Thailand

  • Kamthonkiat, Daroonwan;Kiyoshi, Honda;Hugh, Turral;Tripathi, Nitin K.;Wuwongse, Vilas
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.952-954
    • /
    • 2003
  • In this paper, we present the different characteristics of NDVI fluctuation pattern between irrigated and non-irrigated area in Suphanburi province, in Central Thailand. For non-irrigated rice cultivation area, there is a strong correlation between NDVI fluctuation and peak rainfall, while there is a lower correlation with irrigated area. In this study, the 'peak detector' classifier was developed to identify the area of non-irrigated and irrigated cropping and its cropping intensity (number of crops per year). This classifier was created based on cropping characteristics such as number of crops, time or planting period of each crop and its relationship with the peak of rainfall. The classified result showed good accuracy in identification irrigated and nonirrigated rice cultivation areas.

  • PDF

시계열 패턴 반응형 Low-peak 탐지 기법을 통한 NDVI 보정방법 개선 (An improved method of NDVI correction through pattern-response low-peak detection on time series)

  • 이경상;한경수
    • 대한원격탐사학회지
    • /
    • 제30권4호
    • /
    • pp.505-510
    • /
    • 2014
  • NDVI는 기후변화 모니터링과 식생 변화 탐지 모니터링을 위한 주요한 지표이다. NDVI를 산출하기 전에 cloud masking, 대기보정과 같은 전처리 과정을 거침에도 불구하고 강수, 적설이나 구름의 영향이 완전히 제거되지 않아 NDVI가 현저히 낮게 관측되는 noise가 불규칙적으로 발생한다. 이러한 noise를 보정하기 위해서 국내외로 활발한 연구가 진행되고 있다. 기존의 다중 다항 회귀식을 이용한 방법에서는 과대추정이나 low peak를 잘 탐지하지 못하는 등 문제점이 나타나고 있으므로 보다 정확하게 noise를 보정하는 방법이 요구된다. 본 연구에서는 이동평균을 이용하여 noise를 보정하였고, 기존의 다중 다항 회귀식을 이용하여 산출한 NDVI 시계열과 비교를 해보았다. 그 결과 이동평균을 이용한 방법이 이전의 방법보다 NDVI noise를 잘 보정하는 것으로 보여진다.