• Title/Summary/Keyword: Time series NDVI

Search Result 79, Processing Time 0.027 seconds

PHENOLOGICAL ANALYSIS OF NDVI TIME-SERIES DATA ACCORDING TO VEGETATION TYPES USING THE HANTS ALGORITHM

  • Huh, Yong;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.329-332
    • /
    • 2007
  • Annual vegetation growth patterns are determined by the intrinsic phenological characteristics of each land cover types. So, if typical growth patterns of each land cover types are well-estimated, and a NDVI time-series data of a certain area is compared to those estimated patterns, we can implement more advanced analyses such as a land surface-type classification or a land surface type change detection. In this study, we utilized Terra MODIS NDVI 250m data and compressed full annual NDVI time series data into several indices using the Harmonic Analysis of Time Series(HANTS) algorithm which extracts the most significant frequencies expected to be presented in the original NDVI time-series data. Then, we found these frequencies patterns, described by amplitude and phase data, were significantly different from each other according to vegetation types and these could be used for land cover classification. However, in spite of the capabilities of the HANTS algorithm for detecting and interpolating cloud-contaminated NDVI values, some distorted NDVI pixels of June, July and August, as well as the long rainy season in Korea, are not properly corrected. In particular, in the case of two or three successive NDVI time-series data, which are severely affected by clouds, the HANTS algorithm outputted wrong results.

  • PDF

Method of Monitoring Forest Vegetation Change based on Change of MODIS NDVI Time Series Pattern (MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론)

  • Jung, Myung-Hee;Lee, Sang-Hoon;Chang, Eun-Mi;Hong, Sung-Wook
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.47-55
    • /
    • 2012
  • Normalized Difference Vegetation Index (NDVI) has been used to measure and monitor plant growth, vegetation cover, and biomass from multispectral satellite data. It is also a valuable index in forest applications, providing forest resource information. In this research, an approach for monitoring forest change using MODIS NDVI time series data is explored. NDVI difference-based approaches for a specific point in time have possible accuracy problems and are lacking in monitoring long-term forest cover change. It means that a multi-time NDVI pattern change needs to be considered. In this study, an efficient methodology to consider long-term NDVI pattern is suggested using a harmonic model. The suggested method reconstructs MODIS NDVI time series data through application of the harmonic model, which corrects missing and erroneous data. Then NDVI pattern is analyzed based on estimated values of the harmonic model. The suggested method was applied to 49 NDVI time series data from Aug. 21, 2009 to Sep. 6, 2011 and its usefulness was shown through an experiment.

Land-Cover Vegetation Change Detection based on Harmonic Analysis of MODIS NDVI Time Series Data (MODIS NDVI 시계열 자료의 하모닉 분석을 통한 지표 식생 변화 탐지)

  • Jung, Myunghee;Chang, Eunmi
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.351-360
    • /
    • 2013
  • Harmonic analysis enables to characterize patterns of variation in MODIS NDVI time series data and track changes in ground vegetation cover. In harmonic analysis, a periodic phenomenon of time series data is decomposed into the sum of a series of sinusoidal waves and an additive term. Each wave is defined by an amplitude and a phase angle and accounts for the portion of variance of complex curve. In this study, harmonic analysis was explored to tract ground vegetation variation through time for land-cover vegetation change detection. The process also enables to reconstruct observed time series data including various noise components. Harmonic model was tested with simulation data to validate its performance. Then, the suggested change detection method was applied to MODIS NDVI time series data over the study period (2006-2012) for a selected test area located in the northern plateau of Korean peninsula. The results show that the proposed approach is potentially an effective way to understand the pattern of NDVI variation and detect the change for long-term monitoring of land cover.

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

Vegetation Classification from Time Series NOAA/AVHRR Data

  • Yasuoka, Yoshifumi;Nakagawa, Ai;Kokubu, Keiko;Pahari, Krishna;Sugita, Mikio;Tamura, Masayuki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.429-432
    • /
    • 1999
  • Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.

  • PDF

NDVI Noise Interpolation Using Harmonic Analysis (조화 분석을 이용한 식생지수 보정 기법에 관한 연구)

  • Park, Soo-Jae;Han, Kyung-Soo;Pi, Kyoung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.403-410
    • /
    • 2010
  • NDVI(Normalized Difference Vegetation Index), which is broadly used as short-term data composite, is an important parameter for climate change and long-term land surface monitoring. Although atmospheric correction is performed, NDVI dramatically appears several low peak noise in the long-term time series. They are related to various contaminated sources, such as cloud masking problem and wet ground condition. This study suggests a simple method through harmonic analysis for reducing NDVI noise using SPOT/VGT NDVI 10-day MVC data. The harmonic analysis method is compared with the polynomial regression method suggested previously. The polynomial regression method overestimates the NDVI values in the time series. The proposed method showed an improvement in NDVI correction of low peak and overestimation.

A noise reduction method for MODIS NDVI time series data based on statistical properties of NDVI temporal dynamics (MODIS NDVI 시계열 자료의 통계적 특성에 기반한 NDVI 데이터 잡음 제거 방법)

  • Jung, Myunghee;Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.24-33
    • /
    • 2017
  • Multitemporal MODIS vegetation index (VI) data are widely used in vegetation monitoring research into environmental and climate change, since they provide a profile of vegetation activity. However, MODIS data inevitably contain disturbances caused by the presence of clouds, atmospheric variability, and instrument problems, which impede the analysis of the NDVI time series data and limit its application utility. For this reason, preprocessing to reduce the noise and reconstruct high-quality temporal data streams is required for VI analysis. In this study, a data reconstruction method for MODIS NDVI is proposed to restore bad or missing data based on the statistical properties of the oscillations in the NDVI temporal dynamics. The first derivatives enable us to examine the monotonic properties of a function in the data stream and to detect anomalous changes, such as sudden spikes and drops. In this approach, only noisy data are corrected, while the other data are left intact to preserve the detailed temporal dynamics for further VI analysis. The proposed method was successfully tested and evaluated with simulated data and NDVI time series data covering Baekdu Mountain, located in the northern part of North Korea, over the period of interest from 2006 to 2012. The results show that it can be effectively employed as a preprocessing method for data reconstruction in MODIS NDVI analysis.

NDVI time series analysis over central China and Mongolia

  • Park, Youn-Young;Lee, Ga-Lam;Yeom, Jong-Min;Lee, Chang-Suk;Han, Kyung-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.224-227
    • /
    • 2008
  • Land cover and its changes, affecting multiple aspects of the environmental system such as energy balance, biogeochemical cycles, hydrological cycles and the climate system, are regarded as critical elements in global change studies. Especially in arid and semiarid regions, the observation of ecosystem that is sensitive to climate change can improve an understanding of the relationships between climate and ecosystem dynamics. The purpose of this research is analyzing the ecosystem surrounding the Gobi desert in North Asia quantitatively as well as qualitatively more concretely. We used Normalized Difference Vegetation Index (NDVI) derived from SPOT-VEGETATION (VGT) sensor during 1999${\sim}$2007. Ecosystem monitoring of this area is necessary because it is a hot spot in global environment change. This study will allow predicting areas, which are prone to the rapid environmental change. Eight classes were classified and compare with MODerate resolution Imaging Spectrometer (MODIS) global land cover. The time-series analysis was carried out for these 8 classes. Class-1 and -2 have least amplitude variation with low NDVI as barren areas, while other vegetated classes increase in May and decrease in October (maximum value occurs in July and August). Although the several classes have the similar features of NDVI time-series, we detected a slight difference of inter-annual variation among these classes.

  • PDF

Time Series Analysis of SPOT VEGETATION Instrument Data for Identifying Agricultural Pattern of Irrigated and Non-irrigated Rice cultivation in Suphanburi Province, Thailand

  • Kamthonkiat, Daroonwan;Kiyoshi, Honda;Hugh, Turral;Tripathi, Nitin K.;Wuwongse, Vilas
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.952-954
    • /
    • 2003
  • In this paper, we present the different characteristics of NDVI fluctuation pattern between irrigated and non-irrigated area in Suphanburi province, in Central Thailand. For non-irrigated rice cultivation area, there is a strong correlation between NDVI fluctuation and peak rainfall, while there is a lower correlation with irrigated area. In this study, the 'peak detector' classifier was developed to identify the area of non-irrigated and irrigated cropping and its cropping intensity (number of crops per year). This classifier was created based on cropping characteristics such as number of crops, time or planting period of each crop and its relationship with the peak of rainfall. The classified result showed good accuracy in identification irrigated and nonirrigated rice cultivation areas.

  • PDF

An improved method of NDVI correction through pattern-response low-peak detection on time series (시계열 패턴 반응형 Low-peak 탐지 기법을 통한 NDVI 보정방법 개선)

  • Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.505-510
    • /
    • 2014
  • Normalized Difference Vegetation Index (NDVI) is a major indicator for monitoring climate change and detecting vegetation coverage. In order to retrieve NDVI, it is preprocessed using cloud masking and atmospheric correction. However, the preprocessed NDVI still has abnormally low values known as noise which appears in the long-term time series due to rainfall, snow and incomplete cloud masking. An existing method of using polynomial regression has some problems such as overestimation and noise detectability. Thereby, this study suggests a simple method using amoving average approach for correcting NDVI noises using SPOT/VEGETATION S10 Product. The results of the moving average method were compared with those of the polynomial regression. The results showed that the moving average method is better than the former approach in correcting NDVI noise.