• Title/Summary/Keyword: Time prediction

Search Result 5,838, Processing Time 0.035 seconds

A study on the Time Series Prediction Using the Support Vector Machine (보조벡터 머신을 이용한 시계열 예측에 관한 연구)

  • 강환일;정요원;송영기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.315-315
    • /
    • 2000
  • In this paper, we perform the time series prediction using the SVM(Support Vector Machine). We make use of two different loss functions and two different kernel functions; i) Quadratic and $\varepsilon$-insensitive loss function are used; ii) GRBF(Gaussian Radial Basis Function) and ERBF(Exponential Radial Basis Function) are used. Mackey-Glass time series are used for prediction. For both cases, we compare the results by the SVM to those by ANN(Artificial Neural Network) and show the better performance by SVM than that by ANN.

Model-Free Interval Prediction in a Class of Time Series with Varying Coefficients

  • Park, Sang-Woo;Cho, Sin-Sup;Lee, Sang-Yeol;Hwang, Sun-Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.173-179
    • /
    • 2000
  • Interval prediction based on the empirical distribution function for the class of time series with time varying coefficients is discussed. To this end, strong mixing property of the model is shown and results due to Fotopoulos et. al.(1994) are employed. A simulation study is presented to assess the accuracy of the proposed interval predictor.

  • PDF

Power Consumption Forecasting Scheme for Educational Institutions Based on Analysis of Similar Time Series Data (유사 시계열 데이터 분석에 기반을 둔 교육기관의 전력 사용량 예측 기법)

  • Moon, Jihoon;Park, Jinwoong;Han, Sanghoon;Hwang, Eenjun
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.954-965
    • /
    • 2017
  • A stable power supply is very important for the maintenance and operation of the power infrastructure. Accurate power consumption prediction is therefore needed. In particular, a university campus is an institution with one of the highest power consumptions and tends to have a wide variation of electrical load depending on time and environment. For this reason, a model that can accurately predict power consumption is required for the effective operation of the power system. The disadvantage of the existing time series prediction technique is that the prediction performance is greatly degraded because the width of the prediction interval increases as the difference between the learning time and the prediction time increases. In this paper, we first classify power data with similar time series patterns considering the date, day of the week, holiday, and semester. Next, each ARIMA model is constructed based on the classified data set and a daily power consumption forecasting method of the university campus is proposed through the time series cross-validation of the predicted time. In order to evaluate the accuracy of the prediction, we confirmed the validity of the proposed method by applying performance indicators.

Studies on the Freezing Time Prediction and Factors Influencing Freezing Time Prediction (식품의 동결시간 예측 및 동결시간에 영향을 미치는 요인에 관한 연구)

  • Kong, Jai-Yul;Jeong, Jin-Woong;Kim, Min-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.827-833
    • /
    • 1988
  • The objectives of this investigation were to develop an improved analytical method and to review with respect to experimental parameters and thermo-physical properties influencing the freezing time prediction. The results indicate that the relationship between freezing time and product size is dependent on the surface heat transfer coefficient. As the magnitude of surface heat transfer coefficient decreases, the influence of product size on freezing time becomes more profound. But the freezing time does decrease slightly as the coefficients are increased to values greater than 150 $w/m^2^{\circ}C$. In addition, influence of thermo-physical properties on the freezing time prediction shown generally density, water content, specific heat and thermal conductivity, in order of % difference. Multiple linear regression equation for freezing time prediction were obtained with respect to 4 different food materials with varying thickness.

  • PDF

Prediction System Design based on An Interval Type-2 Fuzzy Logic System using HCBKA (HCBKA를 이용한 Interval Type-2 퍼지 논리시스템 기반 예측 시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.111-117
    • /
    • 2010
  • To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.

  • PDF

Comparison and optimization of deep learning-based radiosensitivity prediction models using gene expression profiling in National Cancer Institute-60 cancer cell line

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3027-3033
    • /
    • 2022
  • Background: In this study, various types of deep-learning models for predicting in vitro radiosensitivity from gene-expression profiling were compared. Methods: The clonogenic surviving fractions at 2 Gy from previous publications and microarray gene-expression data from the National Cancer Institute-60 cell lines were used to measure the radiosensitivity. Seven different prediction models including three distinct multi-layered perceptrons (MLP), four different convolutional neural networks (CNN) were compared. Folded cross-validation was applied to train and evaluate model performance. The criteria for correct prediction were absolute error < 0.02 or relative error < 10%. The models were compared in terms of prediction accuracy, training time per epoch, training fluctuations, and required calculation resources. Results: The strength of MLP-based models was their fast initial convergence and short training time per epoch. They represented significantly different prediction accuracy depending on the model configuration. The CNN-based models showed relatively high prediction accuracy, low training fluctuations, and a relatively small increase in the memory requirement as the model deepens. Conclusion: Our findings suggest that a CNN-based model with moderate depth would be appropriate when the prediction accuracy is important, and a shallow MLP-based model can be recommended when either the training resources or time are limited.

Sequential prediction of TBM penetration rate using a gradient boosted regression tree during tunneling

  • Lee, Hang-Lo;Song, Ki-Il;Qi, Chongchong;Kim, Kyoung-Yul
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.523-533
    • /
    • 2022
  • Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.

Bayesian Neural Network with Recurrent Architecture for Time Series Prediction

  • Hong, Chan-Young;Park, Jung-Hun;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.631-634
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.

  • PDF

Intelligent Traffic Prediction by Multi-sensor Fusion using Multi-threaded Machine Learning

  • Aung, Swe Sw;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.430-439
    • /
    • 2016
  • Estimation and analysis of traffic jams plays a vital role in an intelligent transportation system and advances safety in the transportation system as well as mobility and optimization of environmental impact. For these reasons, many researchers currently mainly focus on the brilliant machine learning-based prediction approaches for traffic prediction systems. This paper primarily addresses the analysis and comparison of prediction accuracy between two machine learning algorithms: Naïve Bayes and K-Nearest Neighbor (K-NN). Based on the fact that optimized estimation accuracy of these methods mainly depends on a large amount of recounted data and that they require much time to compute the same function heuristically for each action, we propose an approach that applies multi-threading to these heuristic methods. It is obvious that the greater the amount of historical data, the more processing time is necessary. For a real-time system, operational response time is vital, and the proposed system also focuses on the time complexity cost as well as computational complexity. It is experimentally confirmed that K-NN does much better than Naïve Bayes, not only in prediction accuracy but also in processing time. Multi-threading-based K-NN could compute four times faster than classical K-NN, whereas multi-threading-based Naïve Bayes could process only twice as fast as classical Bayes.

Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control

  • Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.445-458
    • /
    • 2022
  • Some of the control systems used in engineering structures that use sensors and decision systems have some time delay reducing efficiency of the control system or even might make it unstable. In this research, in addition to considering the effect of the time delay in vibration control process, predictive control is used to compensate the time delay. A semi-active vibration control approach with the help of magneto-rheological dampers is implemented. In addition to using fuzzy inference system to determine the appropriate control voltage for MR damper, structural behavior prediction system and specifying future responses are also used such that the time delays occurring within control process are overcome. For this purpose, determination of prediction horizon is conducted for one, five, and ten steps ahead for single degree of freedom structures with periods ranging from 0.1 to 4 seconds, subjected to twenty earthquake excitations. The amount of time delay applied to the control system is 0.1 seconds. The obtained results indicate that for 0.1 second time delay, average prediction error values compared to the case without time delay is 3.47 percent. Having 0.1 second time delay in a semi-active control system reduces its efficiency by 11.46 percent; while after providing the control system with structure behavior prediction, the difference in the results for the control system without time delay is just 1.35 percent on average; indicating a 10.11 percent performance improvement for the control system.