• Title/Summary/Keyword: Time of wetness

Search Result 72, Processing Time 0.016 seconds

Analysis of Slope Stability Considering the Saturation Depth Ratio by Rainfall Infiltration in Unsaturated Soil (불포화토 내 강우침투에 따른 포화깊이비를 고려한 사면안정해석)

  • Chae, Byung-Gon;Park, Kyu-Bo;Park, Hyuck-Jin;Choi, Jung-Hae;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.343-351
    • /
    • 2012
  • This study proposes a modified equation to calculate the factor of safety for an infinite slope considering the saturation depth ratio as a new variable calculated from rainfall infiltration into unsaturated soil. For the proposed equation, this study introduces the concepts of the saturation depth ratio and subsurface flow depth. Analysis of the factor of safety for an infinite slope is conducted by the sequential calculation of the effective upslope contributing area, subsurface flow depth, and the saturation depth ratio based on quasi-dynamic wetness index theory. The calculation process makes it possible to understand changes in the factor of safety and the infiltration behavior of individual rainfall events. This study analyzes stability changes in an infinite slope, considering the saturation depth ratio of soil, based on the proposed equation and the results of soil column tests performed by Park et al. (2011 a). The analysis results show that changes in the factor of safety are dependent on the saturation depth ratio, which reflects the rainfall infiltration into unsaturated weathered gneiss soil. Under continuous rainfall with intensities of 20 and 50 mm/h, the time taken for the factor of safety to decrease to less than 1.3 was 2.86-5.38 hours and 1.34-2.92 hours, respectively; in the case of repeated rainfall events, the time taken was between 3.27 and 5.61 hours. The results demonstrate that it is possible to understand changes in the factor of safety for an infinite slope dependent on the saturation depth ratio.

High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period (2014년 특별관측 기간 동안 청미천 농경지에서의 WRF/Noah-MP 고해상도 수치모의)

  • Song, Jiae;Lee, Seung-Jae;Kang, Minseok;Moon, Minkyu;Lee, Jung-Hoon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.384-398
    • /
    • 2015
  • In this paper, the high-resolution Weather Research and Forecasting/Noah-MultiParameterization (WRF/Noah-MP) modeling system is configured for the Cheongmicheon Farmland site in Korea (CFK), and its performance in land and atmospheric simulation is evaluated using the observed data at CFK during the 2014 special observation period (21 August-10 September). In order to explore the usefulness of turning on Noah-MP dynamic vegetation in midterm simulations of surface and atmospheric variables, two numerical experiments are conducted without dynamic vegetation and with dynamic vegetation (referred to as CTL and DVG experiments, respectively). The main results are as following. 1) CTL showed a tendency of overestimating daytime net shortwave radiation, thereby surface heat fluxes and Bowen ratio. The CTL experiment showed reasonable magnitudes and timing of air temperature at 2 m and 10 m; especially the small error in simulating minimum air temperature showed high potential for predicting frost and leaf wetness duration. The CTL experiment overestimated 10-m wind and precipitation, but the beginning and ending time of precipitation were well captured. 2) When the dynamic vegetation was turned on, the WRF/Noah-MP system showed more realistic values of leaf area index (LAI), net shortwave radiation, surface heat fluxes, Bowen ratio, air temperature, wind and precipitation. The DVG experiment, where LAI is a prognostic variable, produced larger LAI than CTL, and the larger LAI showed better agreement with the observed. The simulated Bowen ratio got closer to the observed ratio, indicating reasonable surface energy partition. The DVG experiment showed patterns similar to CTL, with differences for maximum air temperature. Both experiments showed faster rising of 10-m air temperature during the morning growth hours, presumably due to the rapid growth of daytime mixed layers in the Yonsei University (YSU) boundary layer scheme. The DVG experiment decreased errors in simulating 10-m wind and precipitation. 3) As horizontal resolution increases, the models did not show practical improvement in simulation performance for surface fluxes, air temperature, wind and precipitation, and required three-dimensional observation for more agricultural land spots as well as consistency in model topography and land cover data.