• Title/Summary/Keyword: Time of flight measurements

Search Result 53, Processing Time 0.019 seconds

Distributions and Behaviors of H2O2 Above the Yellow Sea in the Years Between 2002 and 2004 (2002년에서 2004년 동안 서해상공에서 관측된 과산화수소의 농도분포 및 거동)

  • Kim Y.M.;Shin S.A.;Han J.S.;Lee M.H.;Kim J.A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.689-697
    • /
    • 2005
  • Hydrogen peroxide is a reservoir of OH radical which is the powerful oxidant in the atmosphere. Therefore, the status of the oxidizing atmosphere could be reflected on the concentration of $H_{2}O_{2}$. In this study, the distribution of $H_{2}O_{2}$ was determined during the intensive aircraft measurements over the Yellow sea in March, December 2002, April, November 2003 and March, October 2004. Flights covered from $124^{circ}E\;to\;129^{circ}E\;and\;35^{circ}N\;to\;37^{circ}N$, and extending to 3,000 m. The flight patterns were set properly to assess the altitudinal and longitudinal distribution for $H_{2}O_{2}$. $H_{2}O_{2}$ was extracted onto aqueous solution using a continuously flowing glass coil and analyzed by a high performance liquid chromatography (HPLC) accompanied with a fluorescence detector using postcolumn enzyme derivatization. Mixing ratios of $O_{3},\;NO_{x}\;and\;SO_{2}$ were measured in real time by commercial analysis instruments. Along the heights, the maximum concentration of $H_{2}O_{2}$ appeared around 1,500 m then gradually decreased with increasing altitude. The vertical behavior of ozone showed the similar trend to $H_{2}O_{2}$. The mean mixing ratio of $NO_{x}$ was about 2 ppbv and not showed clear vertical distribution patterns. The mean value of was the same as $NO_{x}$ however $SO_{2}$ appeared extreme concentration in low altitude. $H_{2}O_{2}\;and\;O_{3}$ showed even longitudinal distribution however $NO_{x}$ mixing ratio in land ($127^{circ}E$) was much higher than over the sea. $SO_{2}$ rather decreased with increasing longitude. $H_{2}O_{2}$ was in inverse proportion to $NO_{x}$ in spring and summer and $SO_{2}$ in spring, which indicated its significant role to NO and $SO_{2}$ oxidation pathways.

Development and Preliminary Performance Analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging (1m급 인공위성 레이저추적 시스템용 고속·고정밀 추적마운트 개발 및 예비 성능분석)

  • Choi, Man-Soo;Lim, Hyung-Chul;Lee, Sang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.1006-1015
    • /
    • 2016
  • This paper presents preliminary design and performance analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging(SLR) which is development by Korea Astronomy and Space science Institute(KASI). SLR is considered to be the most accurate technique currently available for the precise orbit determination of Earth satellites. The SLR technique measures the time of flight between pulses emitted from laser transmitter and pulses returned from satellites with laser retro-reflector array. It provides millimeter level precision of range measurements between SLR stations and satellites. A fast and high precision Tracking Mount for SLR which is proposed in this research should be capable of day and nighttime laser tracking about the satellites with laser reflectors from 200 km to 36,000 km altitude(geosynchronous orbit). In order to meet this requirement, we performed mechanical design and structural analysis for Tracking Mount. Also we designed the motion control system and conducted pre-performance analysis to obtain good performance results for a fast and high precision Tracking Mount.

The Research to Correct Overestimation in TOF-MRA for Severity of Cerebrovascular Stenosis (3D-SPACE T2 기법에 의한 TOF-MRA검사 시 발생하는 혈관 내 협착 정도의 측정 오류 개선에 관한 연구)

  • Han, Yong Su;Kim, Ho Chul;Lee, Dong Young;Lee, Su Cheol;Ha, Seung Han;Kim, Min Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.180-188
    • /
    • 2014
  • It is very important accurate diagnosis and quick treatment in cerebrovascular disease, i.e. stenosis or occlusion that could be caused by risk factors such as poor dietary habits, insufficient exercise, and obesity. Time-of-flight magnetic resonance angiography (TOF-MRA), it is well known as diagnostic method without using contrast agent for cerebrovascular disease, is the most representative and reliable technique. Nevertheless, it still has measurement errors (also known as overestimation) for length of stenosis and area of occlusion in celebral infarction that is built by accumulation and rupture of plaques generated by hemodynamic turbulence. The purpose of this study is to show clinical trial feasibility for 3D-SPACE T2, which is improved by using signal attenuation effects of fluid velocity, in diagnosis of cerebrovascular disease. To model angiostenosis, strictures of different proportions (40%, 50%, 60%, and 70%) and virtual blood stream (normal saline) of different velocities (0.19 ml/sec, 1.5 ml/sec, 2.1 ml/sec, and 2.6 ml/sec) by using dialysis were made. Cross-examinations were performed for 3D-SPACE T2 and TOF-MRA (16 times each). The accuracy of measurement for length of stenosis was compared in all experimental conditions. 3D-SPACE 2T has superiority in terms of accuracy for measurements of the length of stenosis, compared with TOF-MRA. Also, it is robust in fast blood stream and large stenosis than TOF-MRA. 3D-SPACE 2T will be promising technique to increase diagnosis accuracy in narrow complex lesions as like two cerebral small vessels with stenosis, created by hemodynamic turbulence.