• 제목/요약/키워드: Time of flight

검색결과 1,760건 처리시간 0.042초

전환제어법칙 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Switching Control Law)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.54-60
    • /
    • 2011
  • The flight control law designed for prototype aircraft often leads to degraded stability and performance, although developed control law verify by non-real time simulation and pilot based evaluations. Therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS (In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV (High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA (Variable stability In flight Simulation Test Aircraft) programs. The IFS necessary switching control law such as fader logic and integrator stand-by mode to reduce abrupt transient and minimize the integrator effect for each flight control laws switching. This paper addresses the concept of switching mechanism with fader logic of "TFS (Transient Free Switch)" and stand-by mode of "feedback type" based on SSWM (Software Switching Mechanism). And the result of real-time pilot evaluation reveals that the aircraft is stable for inter-conversion of flight control laws and transient response is minimized.

Prediction of Possible Intercept Time by Considering Flight Trajectory of Nodong Missile

  • Lee, Kyounghaing;Oh, Kyunngwon
    • International Journal of Aerospace System Engineering
    • /
    • 제3권2호
    • /
    • pp.14-21
    • /
    • 2016
  • This paper presents research on predicting the possible intercept time for a Nodong missile based on its flight trajectory. North Korea possesses ballistic missiles of various ranges, and nuclear warhead miniaturization tests and ballistic missile launch tests conducted last year and in previous years have made these missiles into a serious security threat for the international community. With North Korea's current miniaturization skills, the range of the nuclear capable Nodong missiles can be adjusted according to their use goals and operating environment by using a variety of adjustment methods such as payload, fuel mass, Isp, loft angle, cut-off, etc., and therefore precise flight trajectory prediction is difficult. In this regards, this research performs model simulations of the flight trajectory of North Korea's domestically developed Nodong missiles and uses these as a basis for predicting the possible intercept times for major ballistic missile defense systems such as PAC-3, THAAD, and SM-3.

준 슬라이딩 모드 제어 기법을 이용한 모델 추종 비행제어 시스템 설계 (Model Following flight Control System Design)

  • 최동균;김신;김종환
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1133-1145
    • /
    • 2000
  • In this paper a model following flight control system design using the discrete time quasi-sliding mode control method is described. The quasi-sliding mode is represented as the sliding mode band, not as the sliding surface. The quasi-sliding mode control is composed of the equivalent control for the nominal system without uncertainties and disturbances and the additive control compensating the uncertainties and disturbances. The linearized plant on the equilibrium point is used in designing a flight control system and the stability conditions are proposed for the model uncertainties. Pseudo-state feedback control which uses the model variables for the unmeasured states is proposed. The proposed method is applied to the design of the roll attitude and pitch load factor control of a bank-to-turn missile. The performance is verified through the nonlinear six degrees of freedom flight simulation.

  • PDF

기상, 비행 및 시간 조건이 조종 중인 헬리콥터 조종사의 불안 및 시간지각에 미치는 영향 (Effect of Weather, Flight, and Time Conditions on Anxiety and Time Perception of Helicopter Pilots in Flight)

  • 김문성;김신우;이형철
    • 감성과학
    • /
    • 제26권1호
    • /
    • pp.65-78
    • /
    • 2023
  • 항공기는 대표적인 인간-기계시스템이다. 인간의 조작과 기계의 작동 완료 시점 사이에는 기계가 작동되기 시작하는 시간과 기계에 힘이 전달되기 시작하여 완료되는 시간 등의 지연이 발생하며 항공기 조종은 시스템의 지연을 예측한 타이밍 작업을 통해 이루어진다. 시간지각은 타이밍 작업의 중요한 요소이며, 높은 각성작용과 관련된 불안에 영향을 받는 것으로 알려져 있다. 본 연구는 가상현실 환경에서 현직 조종사를 대상으로 기상, 비행 및 시간 조건이 조종사에게 발생하는 불안과 시간지각에 미치는 영향을 검증하였다. 기상조건은 시계비행 기상 상황과 악기상 상황으로 구분하였고 비행 및 시간 조건을 달리하여 실험 1, 2를 실시하였다. 실험 1은 비교적 운동량의 변화가 적고 지연이 적은 제자리비행과 수평비행 상황에서 조종간에 추가된 버튼을 사용하여 시간지각을 측정하였다. 실험 2는 운동량의 변화가 많고 지연이 많이 발생하는 이륙상황에서 조종간만을 사용하게 하여 자연스럽게 헬리콥터를 이륙시키는 과정에서 시간지각을 측정하였다. 실험결과 악기상 상황에서 불안과 심박수가 증가하는 것으로 나타났으며, 특히 실험 1, 2의 모든 비행조건 중 불안이 증가한 상황에서 시간을 과대 추정하는 것으로 나타났다. 이 결과는 불안의 영향으로 시간을 과대 추정하여 타이밍 작업을 실패할 수 있으며, 이로 인해 조종에 어려움을 겪고 사고로 연결될 가능성이 있음을 시사한다.

비행안전을 고려한 조종사의 비행착각에 관한 연구 (A Study on The Spatial Disorientation of Pilots for Flight Safety)

  • 강한태;윤봉수
    • 한국국방경영분석학회지
    • /
    • 제25권1호
    • /
    • pp.14-28
    • /
    • 1999
  • Statistical data have shown that most of aircraft accidents attributed to the spatial disorientation result from visually restricted environments such as a flight amid clouds or a night flight, in particular during roll maneuvering. This study investigates the time necessary for a flighting pilot to recognize a sloped status as a horizontal status on the condition that the roll maneuver is operating when the visual sense is blocked In this study, aspects which affect such disorientation phenomena are examined. The result of this study shows that a pilot is rushed into a somatogyral illusion when a certain time elapses with visual sense blocked, and that as a speed of the flight increases and a bank of aircraft decreases, so a rushing time increases rapidly.

  • PDF

Characterization of a Membrane Interface for Analysis of Air Samples Using Time-of-flight Mass Spectrometry

  • Jang, Yu-Mi;Oh, Jun-Sik;Park, Chang-Joon;Yang, Sang-Sik;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2791-2796
    • /
    • 2010
  • In the present study, we constructed a membrane inlet assembly for selective permeation of volatile airborne organic compounds for subsequent analysis by time-of-flight mass spectrometry. The time-dependent diffusion of analytes through a $75\;{\mu}m$ thick polydimethylsiloxane membrane was measured by monitoring the ion signal after a step change in the sample concentration. The results fit well to a non-steady-state permeation equation. The diffusion coefficient, response time, and sensitivity were determined experimentally for a range of polar (halogenated) and nonpolar (aromatic) compounds. We found that the response times for several volatile organic compounds were greatly influenced by the alkyl chain length as well as the size of the substituted halogen atoms. The detection limits for benzene, ethylbenzene, and 2-propanol were 0.2 ppm, 0.1 ppm, and 3.0 ppm by volume, respectively, with a linear dynamic range greater than three orders of magnitude. These results indicate that the membrane inlet/time-of-flight mass spectrometry technique will be useful for a wide range of applications, particularly for in situ environmental monitoring.

비행데이터를 활용한 머신러닝 기반 비행착각 탐지 알고리즘 성능 분석 (Performance Analysis of Machine Learning Based Spatial Disorientation Detection Algorithm Using Flight Data)

  • Yim Se-Hoon;Park Chul;Cho Young jin
    • 한국항행학회논문지
    • /
    • 제27권4호
    • /
    • pp.391-395
    • /
    • 2023
  • Helicopter accidents due to spatial disorientation in low visibility conditions continue to persist as a major issue. These incidents often stem from human error, typically induced by stress, and frequently result in fatal outcomes. This study employs machine learning to analyze flight data and evaluate the efficacy of a flight illusion detection algorithm, laying groundwork for further research. This study collected flight data from approximately 20 pilots using a simulated flight training device to construct a range of flight scenarios. These scenarios included three stages of flight: ascending, level, and descent, and were further categorized into good visibility conditions and 0-mile visibility conditions. The aim was to investigate the occurrence of flight illusions under these conditions. From the extracted data, we obtained a total of 54,000 time-series data points, sampled five times per second. These were then analyzed using a machine learning approach.

인삼 해충, 땅강아지 ( Gryllotalpa africana Palisot do Beauvois) 성충의 산란기, 우화기 및 비산활동 (The Oviposition Period, Emergence Period, and Flight Activity of the African Mole Cricket(Gryllotalpa africana Palisct do Beauvois) Adult Damaging Ginseng Plants)

  • 김기황;김상석;손준수
    • Journal of Ginseng Research
    • /
    • 제13권1호
    • /
    • pp.119-122
    • /
    • 1989
  • phenological study on the oviposition, emergence, and flight activity of the African mole cricket adult has been made to obtain basic information for management of pest populations in ginseng fields. The flight activity, as monitored by the blarklight trap, seemed to be initiated depending on the sunset time and lasted about 2-2.5 hours. The trap data (1984-1988) showed that the adult flight of the species occurred twice a year, from early May to late June(Spring flight) and from late August to mid October(Fall flight) during which usually more crickets were trapped than during the former period. The number of females trapped was greater than that of males regardless to the flight period, i.e., females comprised 72.2%, 83.9%, and 73.3% of the total catches in 1984, 1985, and 1986, respectively. Adults emerged from late August to mid October and laid eggs from mid May to mid July the next year, indicating that the spring and fall flights correspond to the oviposition and emergence period, respectively.

  • PDF

비행시험을 통한 경항공기의 매개변수 확정과 시뮬레이션 (Parameter Identification and Simulation of Light Aircraft Based on Flight Test)

  • 황명신;이정훈
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.237-247
    • /
    • 1999
  • Flight parameters of a light aircraft in normal category named ChangGong-91 we identified from flight tests. Modified Maximum Likelihood Estimation (MMLE) is used to produce aerodynamic coefficients, stability and control derivatives. A Flight Training Device (FTD) has been developed based on the identified flight parameters. Flat earth, rigid body, and standard atmosphere are assumed in the FTD model. Euler angles are adapted for rotational state variables to reduce computational load. Variations in flight Mach number and Reynolds number are assumed to be negligible. Body, stability and inertial axes allow 6 second-order linear differential equations for translational and rotational motions. The equations of motion are integrated with respect to time, resulting in good agreements with flight tests.

  • PDF