• Title/Summary/Keyword: Time of WetnessTOW

Search Result 7, Processing Time 0.019 seconds

Assessment of Atmospheric Corrosivity at Jeju Island (제주도 대기환경의 부식성 평가)

  • KIM GUI-SHIK;YANG KYEONG-CHO;HU CHUL-GOO;SONG JEONG-HWA
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.50-57
    • /
    • 2005
  • This study has been conducted to investigate corrosivity of carbon steel, Cu, Zn and Al for one year from Sept. 2003 to Aug. 2004. A model of ISO 9223-ISO 9226 that represents the relation between metal corrosions and environmental parameters was used for atmospheric corrosion evaluations. Environmental parameters for these evaluations are time of wetness(TOW), $SO_2$ and Chloride. Corrosion rates for four metals which are exposed indoors and outdoors were measured on five locations in Jeju Island; Gosan, Seogwipo, Seongsan, Chuna hill and Jeju city. The environmental factor of atmospheric corrosion of Jeju Island for $SO_2$ class is P0, a clean area. TOW as T3 and T4 indicates that Jeju has the characteristics of a tropical area. Chlorides class within 3 km from the coast show the features of costal area as S2 and S3 classes. Chuna hill show the features of woodland as a S1 class. In Corrosion classes of each site which was measured outdoors is higher than indoors. Gosan is the highest class as the rank of C5, and indicated that they're ranked as C3 or C4.

Corrosion of Steel and Zinc in Tropics

  • Hue Nguyen Viet;Kwon Sik Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.272-283
    • /
    • 2003
  • Mild steel and zinc specimens were tested in five atmospheric testing sites of Vietnam in order to collect the corrosion databank as well as to study the corrosion mechanism in tropical conditions, in period of 1997-2000. The results obtained showed that the corrosion rate of steel is in the range of $10-50\;{\mu}m/year$ and of zinc is of $1-5\;{\mu}m/year$. They are interpretable in the comparison with the data obtained in different countries in the South East Asian as well as previous reports of Vietnamese nation project In atmospheric corrosion. The main factors affecting the corrosion in Vietnam tropical conditions are TOW (time of wetness) and salinity. The relationship between sulfur dioxide and corrosion of metals, particularly, zinc was not found clearly. An explanation was suggested about the complex effect of different pieces present in tropical atmosphere and about the alternative of the dominant factors such as humidity, salinity or temperature.

Corrosion Behavior of Zn and Zn-AI Alloy Coated Steels under Cyclic Wet-dry Environments

  • Nishikata, Atsushi;Yadav, Amar Prasad;Tsutsumi, Yusuke;Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • Atmospheric corrosion behaviors of Zn, Zn-5%Al and Zn-55%A l coated steels have been investigated under cyclic wet-dry environments containing chloride ions. The wet-dry cycle was carried out by alternate exposure to immersion in 0.5 M (or 0.05 M) NaCl solutions and drying at $25^{\circ}C$ and 60 %RH. The polarization resistance $R_p$ and solution resistance $R_s$ were monitored by AC impedance technique. From the obtained $1/R_p$ and $1/R_s$ values, the corrosion rate of the coatings and the Time of Wetness (TOW) were estimated, respectively. Effects of chloride ions and TOW on the corrosion rates of Zn, Zn-5%Al, Zn-55%Al coatings and appearance of red rust (onset of underlying steel corrosion) under wet-dry cycles are discussed on the basis of the corrosion monitoring data.

Monitoring of Atmospheric Corrosivity inside Steel Upper Box Girder in Yeongjong Grand Bridge

  • Li, SeonYeob
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.87-94
    • /
    • 2011
  • The typical corrosion prevention method inside the steel upper box girder in a suspension bridge involves the use of paints. However, in an effort to reduce environmental impact and cost, the suspension portion of the Yeongjong Bridge, Korea utilizes dehumidification systems to control humidity and prevent corrosion inside its box girder. Maintaining a uniform humidity distribution at the proper level inside the box girder is critical to the successful corrosion control. In this study, the humidity and the resultant atmospheric corrosivity inside the box girder of the Yeongjong Bridge was monitored. The corrosion rate of the steel inside the box girder was obtained using thin-film electrical resistance (TFER) corrosion sensors. Time-of-wetness (TOW) measurements and the deposition rates of atmospheric pollutants such as $Cl^{-}$ and $SO_{x}$ were also obtained. Classification of the atmospheric corrosivity inside the box girder was evaluated according to ISO 9223. As a result, no corrosion was found in the upper box girder, indicating that the dehumidification system used in the Yeongjong Bridge is an effective corrosion control method.

Effect of Tropical Atmosphere on Corrosion of Different Metals

  • Wijesinghe, Sudesh;Zixi, Tan
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.273-277
    • /
    • 2017
  • Atmospheric corrosion is clearly the most noticeable of all corrosion processes. A tremendous amount of economic losses are caused by atmospheric corrosion. Thus, it is imperative to know the level of atmosphere's aggressiveness or in other words "corrosivity", before designing or planning any corrosion prevention strategy. In Singapore, corrosivity values were not recorded earlier though the process of measurement and recording was prevalent in other countries. With an aim of filling this gap, three test sites were setup at three locations in Singapore to represent marine, industrial and urban atmospheres or their mixtures. Subsequently, corrosivity readings were measured and recorded according to ISO 9223:2012 for the first time in Singapore. Salient atmospheric constituents or parameters like time of wetness (TOW), $Cl^-$, $SO_2$, $NO_2$, $O_3$, and $HNO_3$ were measured at all sites over a period of time to categorize corrosivity of particular atmosphere. The effect of the atmosphere on corrosion of steel, Cu, Al, and Zn has also been investigated and quantified. "Estimated" and "determined" corrosivities were quantified and compared according to ISO 9223 standard. The study data along with final corrosivity measurements will be presented and discussed in the present work.

Atmospheric Corrosion of Hot Dip Zinc Coated Steel in Coastal and Rural Areas of Vietnam

  • Tru, Nguyen Nhi;Duyen, Le Khac;Han, Tran Mai
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.241-246
    • /
    • 2017
  • The comparative results of corrosion testing in humid tropical atmosphere in rural and coastal areas for hot dipped zinc coatings are presented below. The test was conducted in outdoor conditions over a period of five years. The mass loss and other performance characteristics of two types of zinc coatings were evaluated, analysed and discussed in relation to the climatic and environmental parameters. The corrosion rates of the coatings exposed to coastal conditions were about three times higher than the corrosion rates appreciated in rural conditions. The data demonstrates that the corrosion process obeys an equation of the form $M=At^n$, where M is the loss of metal and t is the time of exposure. A and n are constants which values depend on the environmental characteristics and the physicochemical behavior of the corrosion products respectively. Corrosion is strongly influenced by atmospheric time of wetness (TOW) and airborne salinity. The nature and composition of corrosion products are also considered. Simonkolleite, a major crystalline phase, was found in the zinc corrosion products exposed to coastal conditions, while zinc hydroxide and zinc hydrosulfate are easily found in rural settings.

Assessment of Atmospheric Corrosivity at Jeju Island (제주도 대기환경의 부식성 평가)

  • KIM GUI-SHIK;YANG KYEONG-CHO;HU CHUL-GOO;SONG JEONG-HWA
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.253-259
    • /
    • 2004
  • The Jeju Island in Korea is the clean area which the tradition culture is preserved locally well with the nature environment of Heaven's blessing. An air pollution is becoming recently serious problem as the industrial development is proceeded with the urbanization. This study investigates that the atmosphere environment at Jeju area influences on the metal corrosion. A study of the atmosphere corrosion for carbon steel, copper, zinc ana aluminium exposed on five test sites indoors and outdoors. Corrosion results are treated statistically and adjusted to a model previously proposed for carbon steel, copper, zinc and aluminium based on the influence of environmental parameters and main pollutants($SO_2$ and chlorides) on tire atmosphere corrosion of metals. Through this study, we try to set the standards atmosphere corrosion at Jeju Island.

  • PDF