DOI QR코드

DOI QR Code

Effect of Tropical Atmosphere on Corrosion of Different Metals

  • Wijesinghe, Sudesh (Precision Measurements Group, Singapore Institute of Manufacturing Technology) ;
  • Zixi, Tan (Precision Measurements Group, Singapore Institute of Manufacturing Technology)
  • Received : 2017.09.13
  • Accepted : 2017.12.15
  • Published : 2017.12.31

Abstract

Atmospheric corrosion is clearly the most noticeable of all corrosion processes. A tremendous amount of economic losses are caused by atmospheric corrosion. Thus, it is imperative to know the level of atmosphere's aggressiveness or in other words "corrosivity", before designing or planning any corrosion prevention strategy. In Singapore, corrosivity values were not recorded earlier though the process of measurement and recording was prevalent in other countries. With an aim of filling this gap, three test sites were setup at three locations in Singapore to represent marine, industrial and urban atmospheres or their mixtures. Subsequently, corrosivity readings were measured and recorded according to ISO 9223:2012 for the first time in Singapore. Salient atmospheric constituents or parameters like time of wetness (TOW), $Cl^-$, $SO_2$, $NO_2$, $O_3$, and $HNO_3$ were measured at all sites over a period of time to categorize corrosivity of particular atmosphere. The effect of the atmosphere on corrosion of steel, Cu, Al, and Zn has also been investigated and quantified. "Estimated" and "determined" corrosivities were quantified and compared according to ISO 9223 standard. The study data along with final corrosivity measurements will be presented and discussed in the present work.

Keywords

References

  1. M. O. G. Portella, K. F. Portella, P. A. M. Pereira, P. C. Inone, K. J. C. Brambilla, M. S. Cabussu, D. P. Cerqueira, and R. N. Salles, Procedia Engineer., 42, 171 (2012). https://doi.org/10.1016/j.proeng.2012.07.408
  2. J. Tidblad, Atmos. Environ., 55, 1 (2012). https://doi.org/10.1016/j.atmosenv.2012.02.081
  3. J. Morales, S. Martin-Krijer, F. Diaz, J. Hernandez-Borges, and S. Gonzalez, Corros. Sci., 47, 2005 (2005). https://doi.org/10.1016/j.corsci.2004.09.005
  4. H. S. Rawdon, J. Franklin Inst., 223, 655 (1937). https://doi.org/10.1016/S0016-0032(37)91918-5
  5. P. R. Roberge, R. D. Klassen, and P. W. Haberecht, Mater. Design, 23, 321 (2002). https://doi.org/10.1016/S0261-3069(01)00051-6
  6. M. Morcillo, S. Flores, G. Salas, and M. Valencia, Atmos. Environ., 27A, 1959 (1993).
  7. J. Morales, F. Diaz, J. Hernandez-Borges, S. Gonzalez, and V. Cano, Corros. Sci., 49, 526 (2007). https://doi.org/10.1016/j.corsci.2006.04.023
  8. J. R. Vilche, F. E. Varela, G. Acufia, E. N. Codaro, B. M. Rosales, A. Fernandez, and G. Moriena, Corros. Sci., 37, 941 (1995). https://doi.org/10.1016/0010-938X(95)00006-6
  9. F. Mansfeld and R. Vijayakumar, Corros. Sci., 28, 939 (1988). https://doi.org/10.1016/0010-938X(88)90041-8
  10. J. G. Castano, C. A. Botero, A. H. Restrepo, E. A. Agudelo, E. Correa, and F. Echeverria, Corros. Sci., 52, 216 (2010). https://doi.org/10.1016/j.corsci.2009.09.006
  11. T. T. N. Lan, N. T. P. Thoa, R. Nishimura, Y. Tsujino, M. Yokoi, and Y. Maeda, Corros. Sci., 48, 179 (2006). https://doi.org/10.1016/j.corsci.2004.11.018
  12. M. Morcilo, Bele'n Chico, D. de la Fuente, E. Almeida, G. Joseph, S. Rivero, and B. Rosales, Cold Reg. Sci. Technol., 40, 165 (2004). https://doi.org/10.1016/j.coldregions.2004.06.009
  13. F. Corvo, C. Haces, N. Betancourt, L. Maldonadoj, L. Velevaj, M. Echeverria, O. T. De Rincont and A. Rincons, Corros. Sci., 39, 823 (1997). https://doi.org/10.1016/S0010-938X(96)00138-2
  14. D. Persson, D. Thierry, and N. LeBozec, Corros. Sci., 53, 720 (2011). https://doi.org/10.1016/j.corsci.2010.11.004
  15. A. R. Mendoza, F. Corvo, A Gomez, and J. Gomez, Corros. Sci., 46, 1189 (2004). https://doi.org/10.1016/j.corsci.2003.09.014
  16. Y. Ma, Y. Li, and F. Wang, Corros. Sci., 52, 1796 (2010). https://doi.org/10.1016/j.corsci.2010.01.022
  17. F. Corvo, T. Perez, Y. Martin, J. Reyes, L. R. Dzib, J. Gonzalez-Sanchez, and A. Castaneda, Corros. Sci., 50, 206 (2008). https://doi.org/10.1016/j.corsci.2007.06.012
  18. P. Qiu, C. Leygraf, and I. O. Wallinder, Mater. Chem. Phys., 133, 419 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.054
  19. J. A. Gonzalez, M. Morcillo, E. Escudero, V. Lopez, and E. Otero, Surf. Coat. Technol., 153, 225 (2002). https://doi.org/10.1016/S0257-8972(01)01680-2
  20. E. Escudero, V. Lopez, E. Otero, M. J. Bartolome, and J. A. Gonzalez, Surf. Coat. Technol., 201, 7303 (2007). https://doi.org/10.1016/j.surfcoat.2007.01.040
  21. Ma. J. Bartolome, J. F. del Rio, E. Escudero, S. Feliu Jr., V. Lopez , E. Otero, and J. A. Gonzalez, Surf. Coat. Technol., 202, 2783 (2008). https://doi.org/10.1016/j.surfcoat.2007.10.019
  22. D. Persson, D. Thierry, N. LeBozec, and T. Prosek, Corros. Sci., 72, 54 (2013). https://doi.org/10.1016/j.corsci.2013.03.005
  23. M. Ferm and P.-A. Svanberg, Atmos. Environ., 32, 1377 (1998). https://doi.org/10.1016/S1352-2310(97)00170-2