• 제목/요약/키워드: Time of Flight(: TOF)

검색결과 409건 처리시간 0.025초

Identification of Novel Target Proteins of Cyclic GMP Signaling Pathways Using Chemical Proteomics

  • Kim, Eui-Kyung;Park, Ji-Man
    • BMB Reports
    • /
    • 제36권3호
    • /
    • pp.299-304
    • /
    • 2003
  • For deciphering the cyclic guanosine monophosphate (cGMP) signaling pathway, we employed chemical proteomics to identify the novel target molecules of cGMP. We used cGMP that was immobilized onto agarose beads with linkers directed at three different positions of cGMP. We performed a pull-down assay using the beads as baits on tissue lysates and identified 9 proteins by MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry. Some of the identified proteins were previously known cGMP targets, including cGMP-dependent protein kinase and cGMP-stimulated phosphodiesterase. Surprisingly, some of the co-precipitated proteins were never formerly reported to associate with the cGMP signaling pathway. The competition binding assays showed that the interactions are not by nonspecific binding to either the linker or bead itself, but by specific binding to cGMP. Furthermore, we observed that the interactions are highly specific to cGMP against other nucleotides, such as cyclic adenosine monophosphate (cAMP) and 5'-GMP, which are structurally similar to cGMP. As one of the identified targets, MAPK1 was confirmed by immunoblotting with an anti-MAPK1 antibody. For further proof, we observed that the membrane-permeable cGMP (8-bromo cyclic GMP) stimulated mitogen-activated protein kinase 1 signaling in the treated cells. Our present study suggests that chemical proteomics can be a very useful and powerful technique for identifying the target proteins of small bioactive molecules.

Proteomics Analysis of Gastric Epithelial AGS Cells Infected with Epstein-Barr Virus

  • Ding, Yong;Li, Xiao-Rong;Yang, Kai-Yan;Huang, Li-Hua;Hu, Gui;Gao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.367-372
    • /
    • 2013
  • Effects of the Epstein-Barr virus (EBV) on cellular protein expression are essential for viral pathogenesis. To characterize the cellular response to EBV infection, differential proteomes of gastric epithelial AGS cells were analyzed with two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and liquid chromatography electrospray/ionization ion trap (LC-ESI-IT) mass spectrometry identification. Mass spectrometry identified 9 altered cellular proteins, including 5 up-regulated and 4 down-regulated proteins after EBV infection. Notably 2-DE analysis revealed that EBV infection induced increased expression of heat shock cognate 71 kDa protein, actin cytoplasmic 1, pyridoxine-5'-phosphate oxidase, caspase 9, and t-complex protein 1 subunit alpha. In addition, EBV infection considerably suppressed those cellular proteins of zinc finger protein 2, cyclin-dependent kinase 2, macrophage-capping protein, and growth/differentiation factor 11. Furthermore, the differential expressional levels of partial proteins (cyclin-dependent kinase 2 and caspase 9) were confirmed by Western blot analysis.Thus, this work effectively provided useful protein-related information to facilitate further investigation of the mechanisms underlying EBV infection and pathogenesis.

Cyclodextrin Glucanotransferase를 이용한 아밀로펙틴 클러스터의 생산 (Enzymatic Production of Amylopectin Cluster Using Cyclodextrin Glucanotransferase)

  • 이혜원;전혜연;최혜정;심재훈
    • 한국식품영양과학회지
    • /
    • 제43권9호
    • /
    • pp.1388-1393
    • /
    • 2014
  • 선행연구에서 얻은 alkalophilic Bacillus I-5 유래의 CGTase wild-type과 가수분해능이 강화된 mutant 효소를 활용하여 waxy rice starch로부터 아밀로펙틴 클러스터를 제조하였다. SEC-MALLS-RI 분석법으로 CGTase wild-type과 mutant 효소가 처리된 시료의 평균 분자량을 확인한 결과 10분가량의 효소반응으로 두 반응 모두 평균 분자량은 $10^4{\sim}10^5Da$으로 급격히 감소하였음을 확인하였으며, 일정 반응 시간이 경과한 이후에는 더 이상 분자량의 감소가 일어나지 않음으로 미루어 시료가 아밀로펙틴 클러스터 단위로 분해되었으며 그 분자량은 $10^4{\sim}10^5Da$ 정도임을 알 수 있다. 또한 MALDI-TOF/MS 분석을 통하여 CGTase wild-type은 다양한 종류의 cyclic 형태의 maltodextrin을 생성하고 있으며 mutant 효소는 주로 소량의 maltooligosaccharide 들을 생산함을 확인하였다.

Salmonella Gallinarum 세포외막단백질의 프로테옴 분석 및 닭에서의 방어능 효과 (Proteomic Analysis and Protective Effects of Outer Membrane Proteins from Salmonella Gallinarum in Chickens)

  • 선지선;조영재;장주현;강정무;한장혁;한태욱
    • 한국축산식품학회지
    • /
    • 제33권2호
    • /
    • pp.281-286
    • /
    • 2013
  • Salmonella Gallinarum (SG) is known as an important pathogen that causes fowl typhoid in chickens. To investigate SG outer-membrane proteins (OMPs) as a vaccine candidate, we used proteomic mapping and database analysis techniques with extracted OMPs. Also, extracted OMPs were evaluated in several aspects to their safety, immune response in their host and protective effects. Our research has established a proteomic map and database of immunogenic SG-OMPs used as inactive vaccine against salmonellosis in chickens. A total of 22 spots were detected by 2-dimensional gel electrophoresis and immunogenic protein analysis. Eight spots were identified by Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass spectrometry (MALDI-TOF-MS) and peptide mass fingerprinting (PMF) and categorized into four different types of proteins. Among these proteins, OmpA is considered to be an immunogenic protein and involved in the hosts' immune system. To estimate the minimum safety dose in chickens, 35 brown layers were immunized with various concentrations of OMPs, respectively. Consequently, all chickens immunized with more than a $50{\mu}g$ dose were protected against challenges. Moreover, intramuscular administration of OMPs to chickens was more effective compared to subcutaneous administration. These results suggest that the adjuvanted SG-OMP vaccine not only induces both the humoral and cellular immune response in the host but also highly protects the hosts' exposed to virulent SG with $50{\mu}g$ OMPs extracted by our method.

Identification of Factors Regulating Escherichia coli 2,3-Butanediol Production by Continuous Culture and Metabolic Flux Analysis

  • Lu, Mingshou;Lee, Soo-Jin;Kim, Bo-Rim;Park, Chang-Hun;Oh, Min-Kyu;Park, Kyung-Moon;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.659-667
    • /
    • 2012
  • 2,3-Butanediol (2,3-BDO) is an organic compound with a wide range of industrial applications. Although Escherichia coli is often used for the production of organic compounds, the wild-type E. coli does not contain two essential genes in the 2,3-BDO biosynthesis pathway, and cannot ferment 2,3-BDO. Therefore, a 2,3-BDO biosynthesis mutant strain of Escherichia coli was constructed and cultured. To determine the optimum culture factors for 2,3-BDO production, experiments were conducted under different culture environments ranging from strongly acidic to neutral pH. The extracellular metabolite profiles were obtained using high-performance liquid chromatography (HPLC), and the intracellular metabolite profiles were analyzed by ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC/Q-TOF-MS). Metabolic flux analysis (MFA) was used to integrate these profiles. The metabolite profiles showed that 2,3-BDO production favors an acidic environment (pH 5), whereas cell mass favors a neutral environment. Furthermore, when the pH of the culture fell below 5, both the cell growth and 2,3-BDO production were inhibited.

keV and MeV Ion Beam Modification of Polyimide Films

  • Lee, Yeonhee;Seunghee Han;Song, Jong-Han;Hyuneui Lim;Moojin Suh
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.170-170
    • /
    • 2000
  • Synthetic polymers such as polyimide, polycarbonate, and poly(methyl methacrylate) are long chain molecules which consist of carbon, hydrogen, and heteroatom linked together chemically. Recently, polymer surface can be modified by using a high energy ion beam process. High energy ions are introduced into polymer structure with high velocity and provide a high degree of chemical bonding between molecular chains. In high energy beam process the modified polymers have the highly crosslinked three-dimensionally connected rigid network structure and they showed significant improvements in electrical conductivity, in hardness and in resistance to wear and chemicals. Polyimide films (Kapton, types HN) with thickness of 50~100${\mu}{\textrm}{m}$ were used for investigations. They were treated with two different surface modification techniques: Plasma Source Ion Implantation (PSII) and conventional Ion Implantation. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ with dose from 1 x 1015 to 1 x 1017 ions/cm2. Ion energy was varied from 10keV to 60keV for PSII experiment. Polyimide samples were also implanted with 1 MeV hydrogen, oxygen, nitrogen ions with a dose of 1x1015ions/cm2. This work provides the possibility for inducing conductivity in polyimide films by ion beam bombardment in the keloelectronvolt to megaelectronvolt energy range. The electrical properties of implanted polyimide were determined by four-point probe measurement. Depending on ion energy, doses, and ion type, the surface resistivity of the film is reduced by several orders of magnitude. Ion bombarded layers were characterized by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), XPS, and SEM.

  • PDF

Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.331-342
    • /
    • 2017
  • To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.

Galactooligosaccharide Synthesis by Active ${\beta}$-Galactosidase Inclusion Bodies-Containing Escherichia coli Cells

  • Lee, Sang-Eun;Seo, Hyeon-Beom;Kim, Hye-Ji;Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권11호
    • /
    • pp.1151-1158
    • /
    • 2011
  • In this study, a galactooligosaccharide (GOS) was synthesized using active ${\beta}$-galactosidase (${\beta}$-gal) inclusion bodies (IBs)-containing Escherichia coli (E. coli) cells. Analysis by MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometry revealed that a trisaccharide was the major constituent of the synthesized GOS mixture. Additionally, the optimal pH, lactose concentration, amounts of E. coli ${\beta}$-gal IBs, and temperature for GOS synthesis were 7.5, 500 g/l, 3.2 U/ml, and $37^{\circ}C$, respectively. The total GOS yield from 500 g/l of lactose under these optimal conditions was about 32%, which corresponded to 160.4 g/l of GOS. Western blot analyses revealed that ${\beta}$-gal IBs were gradually destroyed during the reaction. In addition, when both the reaction mixture and E. coli ${\beta}$-gal hydrolysate were analyzed by high-performance thin-layer chromatography (HP-TLC), the trisaccharide was determined to be galactosyl lactose, indicating that a galactose moiety was most likely transferred to a lactose molecule during GOS synthesis. This GOS synthesis system might be useful for the synthesis of galactosylated drugs, which have recently received significant attention owing to the ability of the galactose molecules to improve the drugs solubility while decreasing their toxicity. ${\beta}$-Gal IB utilization is potentially a more convenient and economic approach to enzymatic GOS synthesis, since no enzyme purification steps after the transgalactosylation reaction would be required.

광어껍질을 활용한 펩신가수분해물 제조공정 최적화와 피부건강 기능성 (Optimal Processing for Peptic Hydrolysate from Flounder Skin and Its Skincare Function)

  • 강유안;진상근;고종현;최영준
    • 한국해양바이오학회지
    • /
    • 제14권1호
    • /
    • pp.9-24
    • /
    • 2022
  • Low-molecular weight peptides derived from fish collagen exhibit several bioactivities, including antioxidant, antiwrinkle, antimicrobial, antidiabetic, and antihypertension effects. These peptides are also involved in triglyceride suppression and memory improvement. This study aimed to investigate the optimal processing condition for preparing low-molecular weight peptides from flounder skin, and the properties of the hydrolysate. The optimal processing conditions for peptic hydrolysis were as follows: a ratio of pepsin to dried skin powder of 2% (w/w), pH of 2.0, and a temperature of 50℃. Peptic hydrolysate contains several low-molecular weight peptides below 300 Da. Gly-Pro-Hyp(GPHyp) peptide, a process control index, was detected only in peptic hydrolysate on matrix-assisted laser desorption/ionization-time-of-flight(MALDI-TOF) spectrum. 2,2'-azinobis-(3-3-ethylbenzothiazolline-6- sulfonic acid(ABTS) radical scavenging activity of the peptic hydrolysate was comparable to that of 1 mM ascorbic acid, which was used as a positive control at pH 5.5, whereas collagenase inhibition was five times higher with the peptic hydrolysate than with 1 mM ascorbic acid at pH 7.5. However, the tyrosinase inhibition ability of the peptic hydrolysate was lower than that of arbutin, which was used as a positive control. The antibacterial effect of the peptic hydrolysate against Propionibacterium acne was not observed. These results suggest that the peptic hydrolysate derived from a flounder skin is a promising antiwrinkle agent that can be used in various food and cosmetic products to prevent wrinkles caused by ultraviolet radiations.

압전센서를 이용한 구조물 국부/광역 손상 진단 시스템 (Local/Global Structural Health Monitoring System Using Piezoelectric Sensors)

  • 김병수;권혁상;김진욱;노용래
    • 한국음향학회지
    • /
    • 제28권4호
    • /
    • pp.308-317
    • /
    • 2009
  • 본 논문에서는 오실레이터 센서와 램파 센서를 결합하여 구조물 손상 진단을 위한 통합된 압전 센서 시스템을 제안한다. 구조물 손상으로 인한 공진주파수 변화를 관측 할 수 있는 오실레이터 센서는 손상 정도에 민감하게 반응하고 구조가 단순한 장치이지만 측정 범위가 센서 주위로 제한되는 특성을 가진다. 반면에 램파를 이용한 진단 시스템은 원거리에 위치한 구조물의 손상부를 감지하기에 유용하다. 본 논문에서는 오실레이터 센서를 이용한 취약 지점의 국부적인 손상 진단 방식과 램파를 이용한 광역적인 손상 진단 방식을 결합하여 각 시스템의 장점들을 활용할 수 있는 센서 시스템의 적용가능성을 연구하였다. PZT소자를 알루미늄 판에 적용하여, 알루미늄 판의 손상 정도에 따른 오실레이터 공진주파수의 변화와 램파 신호의 Time of flight 그리고 진폭의 변화를 이용하여 크랙의 위치와 크기, 개수의 판별 가능성을 제시하고 실험을 통하여 그 타당성을 검증하였다.