• Title/Summary/Keyword: Time lags structure

Search Result 7, Processing Time 0.021 seconds

A simplified vortex model for the mechanism of vortex-induced vibrations in a streamlined closed-box girder

  • Hu, Chuanxin;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.309-319
    • /
    • 2021
  • The vortex-drift pattern over a girder surface, actually demonstrating the complex fluid-structure interactions between the structure and surrounding flow, is strongly correlated with the VIVs but has still not been elucidated and may be useful for modeling VIVs. The complex fluid-structure interactions between the structure and surrounding flow are considerably simplified in constructing a vortex model to describe the vortex-drift pattern characterized by the ratio of the vortex-drift velocity to the oncoming flow velocity, considering the aerodynamic work. A spring-suspended sectional model (SSSM) is used to measure the pressure in wind tunnel tests, and the aerodynamic parameters for a typical streamlined closed-box girder are obtained from the spatial distribution of the phase lags between the distributed aerodynamic forces at each pressure point and the vortex-excited forces (VEFs). The results show that the ratio of the vortex-drift velocity to the oncoming flow velocity is inversely proportional to the vibration amplitude in the lock-in region and therefore attributed to the "lock-in" phenomena of the VIVs. Installing spoilers on handrails can destroy the regular vortex-drift pattern along the girder surface and thus suppress vertical VIVs.

An Analysis for the Adjustment Process of Market Variations by the Formulation of Time tag Structure (시차구조의 설정에 따른 시장변동의 조정과정 분석)

  • 김태호;이청림
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.87-100
    • /
    • 2003
  • Most of statistical data are generated by a set of dynamic, stochastic, and simultaneous relations. An important question is how to specify statistical models so that they are consistent with the dynamic feature of those data. A general hypothesis is that the lagged effect of a change in an explanatory variable is not felt all at once at a single point in time, but The impact is distributed over a number of future points in time. In other words, current control variables are determined by a function that can be reduced to a distributed lag function of past observations. It is possible to explain the relationship between variables in different points of time and to estimate the long-run impacts of a change in a variable on another if time lag series of explanatory variables are incorporated in the model specification. In this study, distributed lag structure is applied to the domestic stock market model to capture the dynamic response of the market by exogenous shocks. The Domestic market is found more responsive to the changes in foreign market factors both in the short and the long run.

Estimation of Layered Periodic Autoregressive Moving Average Models (계층형 주기적 자기회귀 이동평균 모형의 추정)

  • Lee, Sung-Duck;Kim, Jung-Gun;Kim, Sun-Woo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.507-516
    • /
    • 2012
  • We study time series models for seasonal time series data with a covariance structure that depends on time and the periodic autocorrelation at various lags $k$. In this paper, we introduce an ARMA model with periodically varying coefficients(PARMA) and analyze Arosa ozone data with a periodic correlation in the practical case study. Finally, we use a PARMA model and a seasonal ARIMA model for data analysis and show the performance of a PARMA model with a comparison to the SARIMA model.

Photometric Reverberation Mapping of Active Galactic Nuclei with Medium-band filters and LSGT

  • Kim, Joonho;Im, Myungshin;Choi, Changsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2017
  • Reverberation mapping is one of the best way to investigate structure and kinematics of broad-line regions around central supermassive black holes of active galactic nuclei (AGN). It is usually used to estimate masses of supermassive black holes. So far, reverberation mapping studies have achieved good results for dozens of AGN by spectroscopic monitoring. However, spectroscopic monitoring is time consuming and high cost. Here, we present result of photometric reverberation mapping with medium-band observation. We monitored five nearby AGN which are already studied, have short time-lag, and show bright H-alpha emission lines. Observation has been performed for ~3 months with ~3 days cadence using three medium-band filters installed in LSGT (Lee Sang Gak Telescope). We found 0.01-0.06 magnitude variations by differential photometry. Also time-lags between continuum light-curves and H-alpha emission line light-curves are calculated using Javelin software. The result shows that our study and previous studies are consistent within uncertainty range. From verification of availability in this study, photometric reverberation mapping could be used as a powerful tool to measure central supermassive black holes for large samples and high-redshift AGN in the future.

  • PDF

A Study about Behavior of Steel Column Members under Varying Axial Force (변동축력에 의한 철골기둥부재의 거동에 관한 연구)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Park, Hae-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • The performance-based design is highlighted as an alternative for the current design method, which cannot definitely specify the performance level that a building requires. Research on it is already in progress, however, in developed countries like the United States and Japan, to establish the basis for a performance-based design. Many studies on such design are also being conducted in South Korea, but South Korea still lags behind other countries in all-around technology. On the other hand, the column members, especially the lower external column, are affected by the variation of the axial force by overturning the moments in the case of lateral loads by earthquake. Varying the axial force can affect the time of local buckling and the ultimate behavior. Thus, in this study, the structural performance, such as the time of local buckling and the ultimate behavior, was analyzed through an experimental study on column members under varying axial force. The feasibility of a domestic study proposing a performance level with a story drift angle formed about a structural-performance-based steel structure design was also verified.

Influences of Coastal Upwelling and Time Lag on Primary Production in Offshore Waters of Ulleungdo-Dokdo during Spring 2016 (2016년 춘계 울릉도-독도주변해역에서 동해 연안 용승과 시간차에 의한 일차생산력 영향)

  • Baek, Seung Ho;Kim, Yun-Bae
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.156-164
    • /
    • 2018
  • In order to investigate the upwelling and island effects following the wind storm events in the East Sea (i.e., Uljin-Ulleungdo-Dokdo line) during spring, we assessed the vertical and horizontal profiles of abiotic and biotic factors, including phytoplankton communities. The assessment was based on the Geostationary Ocean Color Imager (GOCI) and field survey data. A strong south wind occurred on May 3, when the lowest sea level pressure (987.3 hPa) in 2016 was observed. Interestingly, after this event, huge blooms of phytoplankton were observed on May 12 along the East Korean Warm Current (EKWC), including the in the offshore waters of Ulleungdo and Dokdo. Although the diatoms dominated the EKWC area between the Uljin coastal waters and Ulleungdo, the population density of raphidophytes Heterosigma akashiwo was high in the offshore waters of Ulleungdo-Dokdo. Based on the vertical profiles of Chlorophyll-a (Chl. a), the sub-surface Chl. a maximum appeared at 20 m depths between Uljin and Ulluengdo, whereas relatively high Chl. a was distributed equally across the entire water column around the waters of Ulleungdo and Dokdo islands. This implies that the water mixing (i.e., upwelling) at the two islands, that occurred after the strong wind event, may have brought the rapid proliferation of autotrophic algae, with nutrient input, to the euphotic layer. Therefore, we have demonstrated that a strong south wind caused the upwelling event around the south-eastern Korean peninsula, which is one of the most important role in occurring the spring phytoplankton blooms along the EKWC. In addition, the phytoplankton blooms may have potentially influenced the oligotrophic waters with discrete time lags in the vicinity of Ulleungdo and Dokdo. This indicates that the phytoplankton community structure in the offshore waters of Ulleungdo-Dokdo is dependent upon the complicated water masses moving related to meandering of the EKWC.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.