• Title/Summary/Keyword: Time difference method (TDM)

검색결과 6건 처리시간 0.274초

Analysis of an Electromagnetic Actuator for Circuit Breakers

  • Shin, Dong-Kyu;Choi, Myung-Jun;Kwon, Jung-Lok;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.346-352
    • /
    • 2007
  • In this paper, we present an analysis of dynamic characteristics of an electromagnetic actuator for circuit breakers. It is indispensable to simultaneously analyze magnetic, electric, and mechanical phenomena to obtain the dynamic characteristics of the electromagnetic actuator because these phenomena are closely related to each other in an electromagnetic actuator system. The magnetic equations are computed by using the finite element method (FEM). The electric equations and the mechanical equations, which include the time derivative terms, are calculated by using the time difference method (TDM). The calculated results, which have been obtained by means of the FEM and the TDM, are presented with experimental data.

Electromagnetic Actuator with Novel Electric Brake for Circuit Breaker

  • Bae, Byungjun;Kim, Minjae
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.340-347
    • /
    • 2016
  • At the stroke end of an electromagnetic circuit breaker, the high speed of the mover makes a huge impact at the contact point, which induces the rebound problem of the mover that causes a breaker failure. Thus, a speed reduction equipment is required to address such problems. This study suggests to use an electric brake reduces the speed at the end of the stroke. The proposed circuit breaker which adopts the electric brake has a variable speed reduction function such that the continued rebound phenomenon ceases to occur. The electric brake is designed by the Finite Element Method (FEM) and the circuit and motion equations are solved using Time Difference Method (TDM). The comparisons between the simulation and experiments demonstrated the usefulness and validity of this study.

고전압 가스 차단기용 전자석 조작기에 대한 해석 (Analysis of New Type of Switchgear for High Voltage Gas Circuit Breaker)

  • 이승민;강종호;김래은;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.872-873
    • /
    • 2008
  • In this paper, a new type of switchgear, electro magnetic force driving actuator (EMFA), is developed and analyzed, applicable to high voltage gas circuit breaker (HGCB). Transient analysis is performed in order to obtain the dynamic characteristics of the EMFA. The distribution of static magnetic flux is obtained using the finite element method (FEM). The governing electric and kinematical equations are solved using the time difference method (TDM). Fabrication and experiments were performed in order to prove the applicability of HGCB for overall class. In comparing the experiment with simulated data, it is confirmed that analysis of the dynamic characteristics of EMFA is appropriate for design.

  • PDF

3링크를 적용한 기중차단기용 전자석 조작기(EMFA) 해석 (Dynamic Characteristics Analysis of Electric Actuator (EMFA) for Air Circuit Breaker (ACB) with Three-bar Linkage structure)

  • 이승민;강종호;곽상엽;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.97-99
    • /
    • 2009
  • In this paper, a new type of electromagnetic actuator, an electro magnetic force driving actuator (EMFA) is developed and analyzed, applicable to air circuit breaker (ACB). Transient analysis is performed in order to obtain the dynamic characteristics of the EMFA. The distribution of static magnetic flux is obtained using the finite element method (FEM). The coupled problems of electrics and mechanics governing equations are solved using the time difference method (TDM). Also according to interception rate of each contactor, investigation about load condition of contactor spring is conducted, applied it to three-link system. And comparison about dynamic characteristics of three-link simulation and experiment data are performed.

  • PDF

TDMA 방식에서 포아송 입력과 MMPP 입력 모델에 따른 ATM 전송의 셀 지연 변이 해석 (Analysis of Cell Variation of ATM Transmission for the Poisson and MMPP Input Model in the TDMA Method)

  • 김정호;최경수
    • 한국정보처리학회논문지
    • /
    • 제3권3호
    • /
    • pp.512-522
    • /
    • 1996
  • 산발적인 지역의 가입자들에 대한 광대역 ISDN(B-ISDN) 서비스를 위하여 위성 회선을 적용하는 것이 검토 되고 있다. 위성 회선의 효율적인 ATM 셀 전송으로 TDMA 방식을 적용하는 것이 유효하지만, TDMA와 ATM의 동기/비동기성의 차이로 인한 셀 지연 변이를 보상하는 방법이 필요하게 된다. 본 논문에서는 지금까지 제안되어 왔던 셀 지연 변이의 보상 방식 중에서 많은 이점을 갖는 셀 계수 방식의 지연 특성을 응용 함으로써 트래픽이 포아송 입력, 마르코프 변조 포아송 과정 입력인 경우에 대하여 셀 제어 시간(Tc)의 적화를 유도하였다. 그리고 셀 클럼핑 현상을 억제하기 위하여 이산 타임 스탬프 방식을 제안 하여 ATM 전송에 따른 CDV 분포의요구 품질의 범위를 해석 하고 검증하였다. 본 방식의 적용에 따라 CDV 분포폭은 약1.2$\times$Tc 정도로 억제가 가능 하여이산 타임 스탬스방식에 따른 전체적인 셀 지연 변이가 감소됨을 알 수 있었다.

  • PDF

기중 차단기용 전자석 조작기 및 3절 링크 설계 (Design of Electromagnetic Actuator with Three-Link Mechanism for Air Circuit Breaker)

  • 김래은;곽상엽;정현교
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1321-1328
    • /
    • 2009
  • In this paper, an electromagnetic force driving actuator (EMFA) and three-link mechanism are proposed as a driving mechanism and connection device for low voltage air circuit breaker (ACB). As the result of dynamic characteristic analysis, the actuator and link mechanism are designed from the simulation and manufactured. The magneitc field of the EMFA is analyzed using the finite element method (FEM). The dynamic characteristic analysis with calculation of the circuit equation and kinetical equation is performed by the time difference method (TDM). Also, the result of the analysis is verified through the experiment of the fabrication model. In this paper, the EMFA size is smaller than the actuator for high voltage circuit breaker. Thus, the dynamic characteristic is analyzed with end-winding inductance that is calculated by the same method which is applied on the circle type end-winding of motors. The designed model for 1600 ampere-frame ACB and the three-link mechanism for connecting contact part with actuating part are manufactured. It is confirmed that the three-link mechanism is possible for improving the circuit breaker efficiency and reducing the size of the EMFA. It is proved that the improved 2-D analysis is more accurate than established method.