• Title/Summary/Keyword: Time difference method (TDM)

Search Result 6, Processing Time 0.022 seconds

Analysis of an Electromagnetic Actuator for Circuit Breakers

  • Shin, Dong-Kyu;Choi, Myung-Jun;Kwon, Jung-Lok;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.346-352
    • /
    • 2007
  • In this paper, we present an analysis of dynamic characteristics of an electromagnetic actuator for circuit breakers. It is indispensable to simultaneously analyze magnetic, electric, and mechanical phenomena to obtain the dynamic characteristics of the electromagnetic actuator because these phenomena are closely related to each other in an electromagnetic actuator system. The magnetic equations are computed by using the finite element method (FEM). The electric equations and the mechanical equations, which include the time derivative terms, are calculated by using the time difference method (TDM). The calculated results, which have been obtained by means of the FEM and the TDM, are presented with experimental data.

Electromagnetic Actuator with Novel Electric Brake for Circuit Breaker

  • Bae, Byungjun;Kim, Minjae
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.340-347
    • /
    • 2016
  • At the stroke end of an electromagnetic circuit breaker, the high speed of the mover makes a huge impact at the contact point, which induces the rebound problem of the mover that causes a breaker failure. Thus, a speed reduction equipment is required to address such problems. This study suggests to use an electric brake reduces the speed at the end of the stroke. The proposed circuit breaker which adopts the electric brake has a variable speed reduction function such that the continued rebound phenomenon ceases to occur. The electric brake is designed by the Finite Element Method (FEM) and the circuit and motion equations are solved using Time Difference Method (TDM). The comparisons between the simulation and experiments demonstrated the usefulness and validity of this study.

Analysis of New Type of Switchgear for High Voltage Gas Circuit Breaker (고전압 가스 차단기용 전자석 조작기에 대한 해석)

  • Lee, Seung-Min;Kang, Jong-Ho;Kim, Rae-Eun;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.872-873
    • /
    • 2008
  • In this paper, a new type of switchgear, electro magnetic force driving actuator (EMFA), is developed and analyzed, applicable to high voltage gas circuit breaker (HGCB). Transient analysis is performed in order to obtain the dynamic characteristics of the EMFA. The distribution of static magnetic flux is obtained using the finite element method (FEM). The governing electric and kinematical equations are solved using the time difference method (TDM). Fabrication and experiments were performed in order to prove the applicability of HGCB for overall class. In comparing the experiment with simulated data, it is confirmed that analysis of the dynamic characteristics of EMFA is appropriate for design.

  • PDF

Dynamic Characteristics Analysis of Electric Actuator (EMFA) for Air Circuit Breaker (ACB) with Three-bar Linkage structure (3링크를 적용한 기중차단기용 전자석 조작기(EMFA) 해석)

  • Lee, Seung-Min;Kang, Jong-Ho;Kwak, Sang-Yup;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.97-99
    • /
    • 2009
  • In this paper, a new type of electromagnetic actuator, an electro magnetic force driving actuator (EMFA) is developed and analyzed, applicable to air circuit breaker (ACB). Transient analysis is performed in order to obtain the dynamic characteristics of the EMFA. The distribution of static magnetic flux is obtained using the finite element method (FEM). The coupled problems of electrics and mechanics governing equations are solved using the time difference method (TDM). Also according to interception rate of each contactor, investigation about load condition of contactor spring is conducted, applied it to three-link system. And comparison about dynamic characteristics of three-link simulation and experiment data are performed.

  • PDF

Analysis of Cell Variation of ATM Transmission for the Poisson and MMPP Input Model in the TDMA Method (TDMA 방식에서 포아송 입력과 MMPP 입력 모델에 따른 ATM 전송의 셀 지연 변이 해석)

  • Kim, Jeong-Ho;Choe, Gyeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.512-522
    • /
    • 1996
  • To provide broadband ISDN service for the users in scattered locations, the application of satellite communications network is seriously considered. To trans mit ATM cells efficiently in satellite communications, it is effective to use TDM A method. However, it is necessary to have a method to compensate the cell delayvari-ation caused by the difference between TDMA and ATM. This paper optimized the cell control time(Tc) when traffic inputs have poisson or markov modulated poisson process by applying cell delay variation characteristics of time stamp method, which has the most advantages among compensation methods or cell delay variation. This paper also intorduces a method of reducing the cell clumping phenomena by adapting discrete time stamp method, including the analysis and evalutation of the range of required quality of CDV distribution by ATM transmission.The result of the experiment shows that CDV distribution-range can be controlled to 1.2$\times$Tc which reduces overall cell delay variation by discrrete time stamp method.

  • PDF

Design of Electromagnetic Actuator with Three-Link Mechanism for Air Circuit Breaker (기중 차단기용 전자석 조작기 및 3절 링크 설계)

  • Kim, Rae-Eun;Kwak, Sang-Yeop;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1321-1328
    • /
    • 2009
  • In this paper, an electromagnetic force driving actuator (EMFA) and three-link mechanism are proposed as a driving mechanism and connection device for low voltage air circuit breaker (ACB). As the result of dynamic characteristic analysis, the actuator and link mechanism are designed from the simulation and manufactured. The magneitc field of the EMFA is analyzed using the finite element method (FEM). The dynamic characteristic analysis with calculation of the circuit equation and kinetical equation is performed by the time difference method (TDM). Also, the result of the analysis is verified through the experiment of the fabrication model. In this paper, the EMFA size is smaller than the actuator for high voltage circuit breaker. Thus, the dynamic characteristic is analyzed with end-winding inductance that is calculated by the same method which is applied on the circle type end-winding of motors. The designed model for 1600 ampere-frame ACB and the three-link mechanism for connecting contact part with actuating part are manufactured. It is confirmed that the three-link mechanism is possible for improving the circuit breaker efficiency and reducing the size of the EMFA. It is proved that the improved 2-D analysis is more accurate than established method.