• 제목/요약/키워드: Time delay neural network (TDNN)

검색결과 34건 처리시간 0.016초

도시침수 해석을 위한 동적 인공신경망의 적용 및 비교 (Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis)

  • 김현일;금호준;한건연
    • 대한토목학회논문집
    • /
    • 제38권5호
    • /
    • pp.671-683
    • /
    • 2018
  • 도시유역에 대한 집중호우에 따른 침수피해가 증가하고 있으며, 기존에 수행된 많은 연구에서 입증 되어진 바와 같이 도시 침수는 하수관망의 통수능을 상회함에 따라 발생하는 내수침수에 주로 기인하고 있다. 도시화가 상당히 진행되고 인구가 밀집되어 있는 지역에 대한 침수피해는 심각한 사회 경제적 피해를 야기한다. 이에 따라 도시지역에 대한 홍수 예측을 위한 확정 및 확률론적 연구가 진행되어 왔지만, 충분한 선행시간을 확보하며 단시간에 홍수량에 대한 예측결과를 도출하기에는 부족한 실정이다. 본 연구에서는 최적의 실시간 도시 홍수 예측 기법을 제시하기 위하여 도시유출해석 기반 실시간 홍수 예측을 위한 IDNN, TDNN 그리고 NARX 동적신경망을 비교하였다. 강남 지역의 2010, 2011년 실제 호우사상에 대하여 총 홍수량 예측 결과, 입력 지연 인공신경망의 최대 Nash-Sutcliffe 효율 계수는 각각 0.86, 0.53, 시간 지연 인공신경망의 경우 0.92, 0.41, 외생변수를 이용한 비선형 자기 회귀의 경우 0.99, 0.98으로 나타났다. 연구 대상지역에 대한 각 맨홀 누적월류량을 고려한 예측 결과의 오차분석을 통하여 외생변수를 이용한 비선형 자기 회귀 기법을 사용하는 것이 추후 도시 홍수 대응체계 구축에 적합할 것으로 나타났다.

한국어 연결단어의 이음소 인식과 어절 형성에 관한 연구 (A Study on the Diphone Recognition of Korean Connected Words and Eojeol Reconstruction)

  • 김경선;정홍
    • 한국음향학회지
    • /
    • 제14권4호
    • /
    • pp.46-63
    • /
    • 1995
  • 본 논문에서는 시간지연신경망을 이용한 한국어 무제한 어휘 연결단어 인식 시스템에 대해 기술하였다. 인식단위로는 인접한 두음소의 천이과정을 포한하는 이음소 (diphone)를 사용하였으며 그 개수는 329개이다. 한국어 연결단어 인식과정은 음성신호의 특징 추출 과정, 이음소 인식과정과 후처리 과정의 세 단계로 구분된다. 특징 추출 단계에서는 입력 음성의 이음소 구간을 분리하여 16차의 필터밸크 (filter-bank) 계수를 구한다. 이음소 인식은 3단계의 계층적 구조로 이루어졌으며 총 30개의 시간지연신경망을 이용해 이음소를 인식한다. 특히, 사용된 시간지연신경망은 인식률을 높이기 위하여 기존의 시간 지연신경망 구조를 변경하였다. 후처리 단계는 음소 천이확률과 음소 혼동확률을 이용한 이음소 오인식 수정과정과 인식된 이음소를 결합하여 어절을 형성하는 과정으로 이루어진다.

  • PDF

학습 기반의 자동차 번호판 인식 시스템 (Learning-based approach for License Plate Recognition System)

  • 김종배;김갑기;김광인;박민호;김항준
    • 융합신호처리학회논문지
    • /
    • 제2권1호
    • /
    • pp.1-11
    • /
    • 2001
  • 자동차 번호판은 조명과 카메라에 따라 영상에서 다양한 형태로 나타나고 영상내의 잡음으로 인해 알고리즘 방식으로 자동차 번호판을 인식하기가 쉽지 않다. 이러한 문제에 적합한 해결 방법으로 본 논문에서는 학습 기반의 자동차 번호판 인식 시스템을 제안한다. 제안한 시스템은 자동차 검출 모듈, 번호판 추출 모듈, 번호판 문자 인식 모듈로 구성된다 본 논문에서는 자동차 번호판 추출을 위해서 입력 영상의 잡음에 상대적인 영향이 적은 시간-지연 신경망(Time-Delay Neural Networks : TDNN)과 번호판 인식을 위해서 일반적인 신경망보다 일반화 성능이 뛰어난 서포트 벡터 머신(Support Vector Machines : SVMs)을 시스템에 적용한다. 주차장과 톨게이트에서 여러 시간대의 움직이는 자동차 영상들을 실험한 결과, 번호판 추출율은 97.5%, 번호판 문자 인식률은 97.2%의 성능을 내었고, 전체 시스템 성능은 947%이며 처리 시간은 약 1조 미만이다. 따라서 본 논문에서 제안한 시스템은 실세계에서 유용하게 적용될 수 있다.

  • PDF

토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구 (A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel)

  • 정지희;김병규;정희영;김해만;이인모
    • 한국터널지하공간학회 논문집
    • /
    • 제21권2호
    • /
    • pp.227-242
    • /
    • 2019
  • 토압식(Earth Pressure-Balanced, EPB) 쉴드 TBM 기계데이터 분석을 통해 토사터널의 특징이 반영된 막장 전방 예측 방법을 제안하였다. 기존에 암반과 토사가 혼합된 복합 지반의 예측에 적용하였던 시계열 분석 모델을 토사터널에 적용가능하도록 수정하였다. 또한 수정된 모델을 사용하여, 토사 종류에 따라 쏘일 컨디셔닝 재료를 선택하는 것이 타당한지 연구하였다. 이를 위해 Self-Organizing Map (SOM) 군집화(clustering) 분석을 수행하였다. 그 결과 무엇보다도 지반타입이 #200체 통과량 35% 기준으로 분류되어야 한다는 것을 확인하였다. 또한 TBM 기계데이터 분석을 통해 수정된 모델이 지반 타입을 예측하는데 사용될 수 있음을 확인하였다. 수정된 기준에 따라 지반 타입을 분류하고 시계열 분석을 수행하면, 10막장 전방 지반에 대해서 98%의 높은 예측 정확도를 보였으며, 이를 통해 수정된 방법의 우수성이 입증되었다. 특히 지반 타입 변화 구간에 대한 예측 정확도도 약 93%로, 10막장 전방에서 지반 타입 변화 여부를 미리 확인할 수 있게 되었다.