• Title/Summary/Keyword: Time delay compensation

Search Result 244, Processing Time 0.031 seconds

Control of a Flexible Link with Time Delays

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1136-1141
    • /
    • 2004
  • This paper presents a control method for time-delay systems and verifies the performance of the designed control system via real experiments. Specifically, the control method is applied to a flexible-link system with time delays. The method combines time- and frequency-domain controllers: linear quadratic optimal controller (or LQR) and lag compensator. The LQR is used to stabilize the system in optimal fashion, whereas the lag compensator is used to compensate time-delay effects by increasing the delay margin of the system. With this methodology, the maximum allowable time delay can be increased significantly. The proposed method is simple but quite practical for time-delay system control as it is based on the conventional loop-shaping method, which gives practical insights on delay-phase relationship. Simulation and experiment results show that the method presented in this paper is feasible and practical.

  • PDF

Robust control of a heave compensation system for offshore cranes considering the time-delay (시간 지연을 고려한 해상 크레인의 상하 동요 보상 시스템의 강인 제어)

  • Seong, Hyung-Seok;Choi, Hyeong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.105-110
    • /
    • 2017
  • This paper introduces a heave compensation system for offshore crane when it subjected to unexpected disturbances such as ocean waves, tidal currents or winds and their external force. The dynamic model consists of a crane which is considered to behave in the same manner as a rigid body, a hydraulic driven winch, an elastic rope and a payload. To keep the payload from moving upwards and downwards, PD(Proportional-Derivative) control was applied by using linearization. In order to achieve a better performance, the sliding mode control and the nonlinear generalized predictive control algorithm was applied according to the time-delay. As a result, the oscillating amplitude of the payload was reduced by the control algorithm. Considering the time-delay involved in the system to be one second, nonlinear generalized predictive controller with a robust controller was a suitable control algorithm for this heave compensation system because it made the position of te payload reach the desired position with the minimum error. This paper presented a control algorithm using the robust control and its simulation results.

Design of Fuzzy Output Feedback Controller for The Nonlinear Systems with Time -Delay

  • Shin, Hyun-Seok;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.559-564
    • /
    • 2002
  • This Paper Proposes a design method of a fuzzy output feedback controller for the nonlinear systems with the unknown time- delay. Recently, Cao et ai. proposed a stabilization method for the nonlinear time-delay systems using a fuzzy controller when the time-delay is known. However, the time-delay is likely to be unknown in practical. We represent the nonlinear systems with the unknown time-delay by Takagi-Sugeno (T-5) fuzzy model and design the fuzzy observer and the parallel distributed compensation (PDC) law based on this observer. By applying Lyapunov-Krasovskii theorem to the closed-loop system, the sufficient condition for the asymptotic stability of the equilibrium Point is derived and converted into the linear matrix inequality (LMI) Problem.

Measurement Delay Error Compensation for GPS/INS Integrated Systems

  • Lim, You-chol;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.33.1-33
    • /
    • 2002
  • The INS provides high rate position, velocity and attitude data with good short-term stability while the GPS provides position and velocity data with long-term stability. By integrating the INS with GPS, a navigation system can be achieved to provide highly accurate navigation performance. For the best performance, time synchronization of GPS and INS data is very important in GPS/INS integrated system. But, it is impossible to synchronize them exactly due to the communication and computation time-delay. In this paper, to reduce the error caused by the measurement time-delay in GPS/INS integrated systems, error compensation methods using separate bias Kalman filter are suggested for both the...

  • PDF

Compensation Method of eLoran Signal's Propagation Delay and Performance Assessment in the Field Experiment

  • Son, Pyo-Woong;Fang, Tae Hyun;Park, Sul Gee;Han, Younghoon;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • The eLoran system is a high-power terrestrial navigation system that is recognized as the most appropriate alternative to complement the GNSS's vulnerability to radio frequency interference. Accordingly, Korea has conducted eLoran technology development projects since 2016. The eLoran system developed in Korea provides 20 m positioning accuracy to maritime user in Incheon and Pyeongtaek harbor. To accurately calculate the position with the eLoran signal, it is necessary to apply a compensation method that mitigates the propagation delay. In this paper, we develop the compensation method to mitigate the eLoran signal propagation delay and evaluate the positioning performance in Incheon harbor. The propagation delay due to the terrain characteristics is pre-surveyed and stored in the user receiver. Real-time fluctuations in propagation delay compared to the pre-stored data are mitigated by the temporal correction generated at a nearby differential Loran station. Finally, two performance evaluation tests were performed to verify the positioning accuracy of the Korean eLoran system. The first test took place in December 2020 and the second in April 2021. As a result, the Korean eLoran service has been confirmed to provide 20 m location accuracy without GPS.

Cooperation of Time-delay for Internet-based Mobile Robot Using Fuzzy Logic

  • Yoo, Bong-Soo;Lee, Sang-Min;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.179-184
    • /
    • 2002
  • Recently, internet-based applications can be found easily in various felds. Internet-based telerobot system becomes one of important applications of internet. Among many important technological issues on the internet-based telerobot, time-delay is inherently critical problem to be solved. Time-delay is classified as micro time-delay and macro time-delay in this paper. Algorithms for compensation of path-error and time-error are proposed for the both types of time-delays using fuzzy logic since fuzzy logic is one of the best tools to represent expert's knowledge. Simulation results show the validity of the proposed algorithms.

Time Delay Compensation of Induction Motor Vector Control System (유도전동기 벡터제어 시스템의 시간지연 보상)

  • 박철우;최연호;임성운;윤경섭;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.231-231
    • /
    • 2000
  • It is proposed that a novel method which can compensate the time delay occurs in overall system, when voltage and current is measured, owing to LPF, hysteresis control inverter and microprocessor program computation time. The Proposed scheme estimates the time delay using the difference between Q-axis stator current command and time delayed Q-axis stator current in synchronous reference frame, and compensates the time delay of voltage and current using angular displacement of DQ transformation. The proposed scheme compensates accurately the time delay occurs in overall system. Therefore performance of vector control system is improved highly and it is verified by simulation and experiment.

  • PDF

I-Q Channel 12bit 1GS/s CMOS DAC for WCDMA (WCDMA 통신용 I-Q 채널 12비트 1GS/s CMOS DAC)

  • Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Kim, Soo-Jae;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.56-63
    • /
    • 2008
  • This paper describes a 12 bit 1GS/s current mode segmented DAC for WCDMA communication. The proposed circuit in this paper employes segmented structure which consists of 4bit binary weighted structure in the LSB and 4bit thermometer decoder structure in the mSB and MSB. The proposed DAC uses delay time compensation circuits in order to suppress performance decline by delay time in segmented structure. The delay time compensation circuit comprises of phase frequency detector, charge pump, and control circuits, so that suppress delay time by binary weighted structure and thermometer decoder structure. The proposed DAC uses CMOS $0.18{\mu}m$ 1-poly 6-metal n-well process, and measured INL/DNL are below ${\pm}0.93LSB/{\pm}0.62LSB$. SFDR is approximately 60dB and SNDR is 51dB at 1MHz input frequency. Single DAC's power consumption is 46.2mW.

Design of the Feed Forward Controller in Digital Method to Improve Transient Characteristics for Dynamic Voltage Restorers (동적전압보상기의 과도특성을 개선하기 위한 디지털방식의 전향제어기 설계)

  • 김효성;이상준;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.275-284
    • /
    • 2004
  • This paper discusses how to control the compensation voltages in dynamic voltage restorers (DVR). On analyzing the power circuit of a DVR system, control limitations and control targets are presented for the voltage compensation in DVRs. Based on the preceded power stage analysis, a novel controller for the compensation voltages of DVRs is proposed by a feed forward control scheme. This paper discusses also the time delay problems in the control system of DVRs. Digitally controlled DVR systems normally have control delay at amount of one sampling time of the control system and a half of the switching period of the DVR inverter. The control delay in digital controllers increases the dimension of the system transfer function one degree higher, which makes the control system more complicate and more unstable. This paper proposes a guide line to design the control gain, appropriate output filter parameters and inverter switching frequency for DVRs with digital controllers. Proposed theory is verified by an experimental DVR system with a full digital controller.