• Title/Summary/Keyword: Time and motion studies

Search Result 345, Processing Time 0.025 seconds

Kinematical Analysis of Pitching wedge swing motion in University Golfer (대학 골프 선수의 Pitching wedge 스윙동작의 운동학적 특성 분석)

  • Back, Jin-Ho;Yoon, Dong-Seob;Kim, Jae-Phil
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.133-149
    • /
    • 2003
  • The purposes of present study were to determine the major check-points of golf swing from the review of previous studies, and to suggest additional information on the teaching theory of golf. The golf swing motion of 6 male and female elite university golf players were filmed with 16mm Locam II high speed cameras at the speed of 200f/s, and variables such as time, displacement, angle, velocity were calculated and analyzed by 3D Cinematography using DLT method. The results were: 1. Differences were shown in the ratio of weight distribution on the feet, cocking angle, take-back velocity, club-head velocity at impact depending upon the physical characteristics and club used for swing. 2. Time for the down-swing and impact were $0.27{\sim}0.29s$ in men and $0.29{\sim}0.32s$ in women, which was 1/3 of the time for the back-swing. Women showed longer total swing time than men because of longer time in back-swing, follow-through and finish. 3. Men showed larger range of motion in shoulder and knee joints than women, on the other hand women showed larger range of motion in hip joint than men. 4. Cocking motion and right elbow flexion were occurred at the top of back-swing and cocking release was occurred at the moment of impact. Maximum rotations of shoulder and hip joints were found between the top of back-swing and down-swing phase. 5. Women showed lower back-swing velocity than men, and men showed higher club velocity(men: $38.2{\sim}38.6m/s$, women: $35.1{\sim}36.4m/s$) than women.

Cows per Man-Hour(CMPH) based on Time and Motion Studies for various Milking Systems (착유시설 형태에 따른 착유 노동생산성에 관한 연구)

  • 정태영;김형화;김동일;이정호;이홍표;김종민;이연섭
    • Journal of Animal Environmental Science
    • /
    • v.3 no.2
    • /
    • pp.87-95
    • /
    • 1997
  • This study was peformed to compare work routine time and performance of milking systems by measuring motion and time in milking procedure. Data were collected from thirteen dairy farms among which milking was done by bucket in two farms, by pipelines in three, by tandem parlors in four including one remodeled side-opening, by herringborn parlors in three and by a parallel milking parlor. Recording time and motion for milking parlor. Recording time and motion for milking procedure was performed by stopwatch and notebook computer. Work routine elements were recorded and calculated into cows milked per-man-hour(CMPH). The results are as follows : Average milking time per cow(MTPC) in bucket and pipeline milking systems usually installed in cow stall were 442.7 and 395.8 seconds, respectively. And average CMPH of bucket and pipeline milking system were 144.5, 303.3, 272.5 and 380.3 seconds, respectively. And CMPH of tandem, herringbone, parallel and modified side-opening systems were 24.9, 11.9, 13.2 and 9.5 heads, respectively. CMPH was the highest in the tandem milking system and the lowest in the bucket milking facilities. CMPH, when milked in a parlor resulted in high value compared with bucket or pipeline milking systems installed in cow stable. They showed considerably low CMPH compared with the results of other countries. The reason why so low CMPH could be derived from type and mechanization of facilities and equipment, operator's ability, number of operator, idle time and milking procedure.

Development of an optimal protocol to induce capacitation of boar spermatozoa in vitro

  • Seung-Ik Jang;Jae-Hwan Jo;Eun-Ju Jung;Woo-Jin Lee;Ju-Mi Hwang;Jeong-Won Bae;Woo-Sung Kwon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.285-291
    • /
    • 2022
  • In 1951, Colin Russell Austin and Min Chueh Chang identified "capacitation", a special process involving ejaculated spermatozoa in the female reproductive tract. Capacitation is a phenomenon that occurs in vivo, but almost all knowledge of capacitation has been obtained from in vitro studies. Therefore, numerous trials have been performed to establish in vitro capacitation methods for various studies on reproduction. Although a series of studies have been conducted to develop an optimal protocol for inducing capacitation, most have focused on identifying the appropriate chemical compounds to induce the capacitation of boar spermatozoa in vitro. Therefore, the purpose of this study was to identify the optimal incubation time for inducing capacitation in vitro. Duroc semen was incubated for various periods (60, 90, and 120 min) to induce capacitation. Sperm function (sperm motility, motion kinematic parameters, and capacitation status) was evaluated. The results showed that total sperm motility, rapid sperm motility, progressive sperm motility, curvilinear velocity, and average path velocity significantly decreased in a time-dependent manner. However, the capacitation status did not show any significant changes. Taken together, these results indicate that an incubation time of more than 60 min suppresses sperm motility and motion kinematic parameters. Therefore, we suggest that 60 min may be the best incubation time to induce capacitation without negative effects on sperm motility and motion kinematics in boar spermatozoa in vitro.

Derivation of analytical fragility curves using SDOF models of masonry structures in Erzincan (Turkey)

  • Karimzadeh, Shaghayegh;Kadas, Koray;Askan, Aysegul;Erberik, M. Altug;Yakut, Ahmet
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.249-261
    • /
    • 2020
  • Seismic loss estimation studies require fragility curves which are usually derived using ground motion datasets. Ground motion records can be either in the form of recorded or simulated time histories compatible with regional seismicity. The main purpose of this study is to investigate the use of alternative ground motion datasets (simulated and real) on the fragility curves. Simulated dataset is prepared considering regional seismicity parameters corresponding to Erzincan using the stochastic finite-fault technique. In addition, regionally compatible records are chosen from the NGA-West2 ground motion database to form the real dataset. The paper additionally studies the effects of hazard variability and two different fragility curve derivation approaches on the generated fragility curves. As the final step for verification purposes, damage states estimated for the fragility curves derived using alternative approaches are compared with the observed damage levels from the 1992 Erzincan (Turkey) earthquake (Mw=6.6). In order to accomplish all these steps, a set of representative masonry buildings from Erzincan region are analyzed using simplified structural models. The results reveal that regionally simulated ground motions can be used alternatively in fragility analyses and damage estimation studies.

A Study on Emotion Recognition of Chunk-Based Time Series Speech (청크 기반 시계열 음성의 감정 인식 연구)

  • Hyun-Sam Shin;Jun-Ki Hong;Sung-Chan Hong
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.11-18
    • /
    • 2023
  • Recently, in the field of Speech Emotion Recognition (SER), many studies have been conducted to improve accuracy using voice features and modeling. In addition to modeling studies to improve the accuracy of existing voice emotion recognition, various studies using voice features are being conducted. This paper, voice files are separated by time interval in a time series method, focusing on the fact that voice emotions are related to time flow. After voice file separation, we propose a model for classifying emotions of speech data by extracting speech features Mel, Chroma, zero-crossing rate (ZCR), root mean square (RMS), and mel-frequency cepstrum coefficients (MFCC) and applying them to a recurrent neural network model used for sequential data processing. As proposed method, voice features were extracted from all files using 'librosa' library and applied to neural network models. The experimental method compared and analyzed the performance of models of recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU) using the Interactive emotional dyadic motion capture Interactive Emotional Dyadic Motion Capture (IEMOCAP) english dataset.

Validity of a Portable APDM Inertial Sensor System for Stride Time and Stride Length during Treadmill Walking

  • Tack, Gye Rae;Choi, Jin Seung
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • Objective: The purpose of this study was to compare the accuracy of stride time and stride length provided by a commercial APDM inertial sensor system (APDM) with the results of three dimensional motion capture system (3D motion) during treadmill walking. Method: Five healthy men participated in this experiment. All subjects walked on the treadmill for 3 minutes at their preferred walking speed. The 3D motion and the APDM were simultaneously used for extracting gait variables such as stride time and stride length. Mean difference and root mean squared (RMS) difference were used to compare the measured gait variables from the two measurement devices. The regression equation derived from the range of motion of the lower limb was also applied to correct the error of stride length. Results: The stride time extracted from the APDM was almost the same as that from the 3D motion (the mean difference and RMS difference were less than 0.0001 sec and 0.0085 sec, respectively). For stride length, mean difference and RMS difference were less than 0.1141 m and 0.1254 m, respectively. However, after correction of the stride length error using the derived regression equation, the mean difference and the RMS difference decreased to 0.0134 m and 0.0556 m or less, respectively. Conclusion: In this study, we confirmed the possibility of using the temporal variables provided from the APDM during treadmill walking. By applying the regression equation derived only from the range of motion provided by the APDM, the error of the spatial variable could be reduced. Although further studies are needed with additional subjects and various walking speeds, these results may provide the basic data necessary for using APDM in treadmill walking.

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.

Transient response of 2D functionally graded beam structure

  • Eltaher, Mohamed A.;Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.357-367
    • /
    • 2020
  • The objective of this article is investigation of dynamic response of thick multilayer functionally graded (FG) beam under generalized dynamic forces. The plane stress problem is exploited to describe the constitutive equation of thick FG beam to get realistic and accurate response. Applied dynamic forces are assumed to be sinusoidal harmonic, sinusoidal pulse or triangle in time domain and point load. Equations of motion of deep FG beam are derived based on the Hamilton principle from kinematic relations and constitutive equations of plane stress problem. The numerical finite element procedure is adopted to discretize the space domain of structure and transform partial differential equations of motion to ordinary differential equations in time domain. Numerical time integration method is used to solve the system of equations in time domain and find the time responses. Numerical parametric studies are performed to illustrate effects of force type, graduation parameter, geometrical and stacking sequence of layers on the time response of deep multilayer FG beams.

Vibration Analysis of a Deploying and Spinning Beam with a Time-dependent Spinning Speed (시간에 따라 변하는 회전 속도와 함께 회전하며 전개하는 보의 진동 분석)

  • Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.874-880
    • /
    • 2015
  • This paper presents the vibration analysis of a deploying beam with spin when the beam has a time-dependent spinning speed. In the previous studies for the deploying beams with spin, the spinning speed was time-independent. However, it is more reasonable to consider the time-dependent spinning speed. The present study introduces the time-dependent spinning speed in the modeling. The Euler-Bernoulli beam theory and von Karman nonlinear strain theory are used together to derive the equations of motion. After the equations of motion are transformed into the weak forms, the weak forms are discretized. The natural frequency and dynamic response are obtained. The effect of the time-dependent spinning speed on the dynamic response is studied.

A Study on Implementation of Motion Graphics Virtual Camera with AR Core

  • Jung, Jin-Bum;Lee, Jae-Soo;Lee, Seung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.85-90
    • /
    • 2022
  • In this study, to reduce the time and cost disadvantages of the traditional motion graphic production method in order to realize the movement of a virtual camera identical to that of the real camera, motion graphics virtualization using AR Core-based mobile device real-time tracking data A method for creating a camera is proposed. The proposed method is a method that simplifies the tracking operation in the video file stored after shooting, and simultaneously proceeds with shooting on an AR Core-based mobile device to determine whether or not tracking is successful in the shooting stage. As a result of the experiment, there was no difference in the motion graphic result image compared to the conventional method, but the time of 6 minutes and 10 seconds was consumed based on the 300frame image, whereas the proposed method has very high time efficiency because this step can be omitted. At a time when interest in image production using virtual augmented reality and various studies are underway, this study will be utilized in virtual camera creation and match moving.